Коэффициент смещения зуба шестерни что это

Опубликовано: 29.04.2024

Цилиндрические эвольвентные зубчатые передачи в зависимости от величины воспринимаемого смещения классифицируются следующим образом.

нулевые или равносмещенные (составленные из зубчатых колес без смещения или с равными, но противоположными по знаку смещениями) x1 = x2 = 0 или x1 = - x2 , D 1 = D 2 = 0 или D 1 = - D 2 , y Ч m = 0, y = 0, aw= a = r1 + r2 , aw = a ;

положительные (составленные из колес с положительными смещениями или когда положительное смещение одного колеса больше отрицательного смещения другого)

x1 > 0, x2 > 0 или x1 > | - x2 | , D 1 > 0, D 2 > 0 или D 1 > | - D 2 | , y Ч m > 0, y > 0, aw> a , aw > a ;

отрицательные (составленные из колес с отрицательными смещениями или когда отрицательное смещение одного колеса больше положительного смещения другого)

x1 D 1 D 2 D 2 | , y Ч m Понятие о блокирующем контуре зубчатой передачи

При проектировании зубчатой передачи необходимо решить несколько задач:

  • выбрать тип зубчатого механизма, его передаточное отношение и числа зубьев колес;
  • провести проектный прочностной расчет механизма и определить величину межосевого расстояния или модуль зубчатых колес( модуль зубчатых колес округляется до ближайшей величины из стандартного ряда модулей );
  • · провести геометрический расчет зубчатой передачи для выбранных коэффициентов смещения исходного контура, которые обеспечивают исключение подрезания, срезания и заострения зубьев колес и благоприятное или оптимальное сочетание качественных показателей зубчатой передачи.

Для эвольвентных зубчатых передач, по предложению М.Б.Громана, область сочетаний коэффициентов смещений зубчатых колес x1 и x2, удовлетворяющих ограничениям по срезанию в станочном зацеплении, заострению, заклиниванию в зацеплении эвольвент и на переходных кривых, по допустимым минимальным или максимальным значениям качественных показателей, называют блокирующим контуром (рис.13.2). Границы блокирующего контура отсекают те значения коэффициентов смещению которые недопустимы по указанным условиям. Значения, расположенные внутри контура, допустимы, но каждой паре коэффициентов смещения соответствует свое сочетание качественных показателей. Для выбора коэффициентов смещения на блокирующий контур наносятся изолинии качественных показателей, с использованием которых внутри контура выбираются коэффициенты смещения с оптимальным сочетанием качественных показателей. И.И.Болотовским и его сотрудниками созданы справочники, которые содержат блокирующие контуры для большого числа зубчатых передач. Построение блокирующего контура является трудоемкой вычислительной задачей и требует значительных затрат даже при применении ЭВМ. В настоящее время, с ростом производительности компьютеров, появляется возможность геометрического синтеза оптимальных зубчатых передач без предварительного построения блокирующего контура.

На рис. 13.2 ограничивающие линии блокирующего контура:

1 - коэффициент торцевого перекрытия ea =1;

2 - толщина зуба колеса z1 по окружности вершин sa1 = 0;

3 - допустимое подрезание колеса z2 ;

4 - допустимое подрезание колеса z1 ;

5 - интерференция или заклинивание с переходной кривой колеса z2. Линии качественных показателей:

6 - линия sa2 = 0.25m;

7 - линия sa2 = 0.4m;

8 - линия выравненных удельных скольжений l1=l2;

9 - линия sa1 = 0.4m;

10 - линия sa1 = 0.25m;

11 - линия x2 = x2min ;

12 - линия x1 = x1min ;

13 - линия ea = 1.2.

Качественные показатели цилиндрической эвольвентной передачи.

К качественным показателям цилиндрической эвольвентной зубчатой передачи относятся:

  • коэффициент торцевого перекрытия
  • коэффициент полезного действия
  • коэффициент удельного скольжения
  • коэффициент удельного давления
  • коэффициент формы зуба

Рассмотрим эти коэффициенты подробнее (исключив из рассмотрения коэффициент полезного действия, как величину характеризующую реальные, а не рассматриваемые нами идеализированные механизмы).

Коэффициент торцевого перекрытия

Коэффициентом перекрытия eg называется величина отношения угла перекрытия зубчатого колеса к его угловому шагу, где под углом перекрытия понимают угол на который поворачивается колесо за время зацепления одной пары зубьев. Для цилиндрических колес различают полное eg, торцевое ea и осевое перекрытие:

где осевое перекрытие имеется только в косозубых передачах.

Коэффициент перекрытия определяет величину зоны двухпарного контакта, когда одновременно зацепляются два последовательно расположенных зуба. Так как до окончания зацепления одной пары зубьев, следующая пара должна войти в контакт, нельзя допускать в прямозубых передачах . Допустимое значение коэффициента перекрытия должно несколько превышать единицу и, в зависимости от назначения передачи и точности ее изготовления, выбирается в пределах . Максимальное значение коэффициента перекрытия для зубчатых колес, обработанных инструментом со стандартным исходным производящим контуром, составляет . Наиболее благоприятны величины коэффициента перекрытия равные целым числам, например двум или трем. Обеспечить это можно только используя инструмент с нестандартным исходным производящим контуром. Дробные значения коэффициента перекрытия, например близкие к полутора, приводят к циклическому изменению жесткости передачи и к возникновению параметрических колебаний.

Коэффициент формы зуба

Геометрическая форма зуба в значительной мере определяет показатели его как изгибной, так и контактной прочности. Оценка влияния геометрии зуба на изгибную прочность осуществляется коэффициентом формы зуба Y. Этот коэффициент определяется через параметры балки параболиче-

ского сечения (балки равного сопротивления изгибу), которая вписывается в контур зуба так, чтобы вершина параболы располагалась в точке пересечения оси зуба и нормали к профилю в вершине, а ветви касались профиля зуба у основания ( см. схему на рис. 13.4).

где Sp - толщина зуба по хорде на окружности, проходящей через точки касания параболы и профиля зуба, l - высота от вершины параболы до хорды Sp .

Коэффициент удельного давления.

Для характеристики влияния геометрической формы зуба на контактную прочность используется коэффициент удельного давления . Из анализа формулы Герца, которая используется для оценки контактных напряжений в высшей паре, можно заключить, что единственный геометрический элемент в этой формуле - приведенный радиус кривизны

где - радиусы кривизны профилей в контактной точке, знак + относится к внешнему зацеплению, - к внутреннему. Чтобы коэффициент давления характеризовал контактное напряжение не-зависимо от абсолютных размеров зуба, которые определяются модулем, введено понятие удельного давления как отношения модуля к приведенному радиусу кривизны

Для цилиндрической прямозубой эвольвентной передачи:

Тогда для внешнего зацепления: при контакте в точке В2 (на выходе зубьев из зацепления) :

при контакте в точке В1 (на входе зубьев в зацепление)

при контакте в полюсе точке Р:

Коэффициент удельного скольжения.

Как показано выше, скорость скольжения в точке контакта профилей высшей пары определяется следующим выражением :

где l кр - расстояние от точки контакта до полюса, знак "+" для внешнего зацепления ,"-" для внутреннего. Величина износа активных частей профилей в высшей паре в значительной степени зависит от их относительного скольжения и от скорости этого скольжения. Для оценки скольжения при геометрических расчетах зубчатых передач пользуются коэффициентом удельного скольжения

где Vtki - проекция скорости контактной точки звена i на контактную нормаль. Из схемы эвольвентного зацепления ( [ 1 ] стр.105 рис. 86 )

после подстановки и преобразований для колеса z1 при контакте в точке В2 (на выходе зубьев из зацепления)

для колеса z2 при контакте в точке В1 (на входе зубьев в зацепление)

Графики изменения коэффициентов удельного давления и удельного скольжения по линии зацепления зубчатых колес.

Оптимальный геометрический синтез зубчатой передачи.

Оптимальный геометрический синтез зубчатой передачи проводится аналогично оптимальному метрическому синтезу рычажных механизмов, но с использованием других ограничений и других качественных показателей. Среди качественных показателей необходимо различать противоречивые и непротиворечивые. Так с увеличением смещений удельное давление и коэффициент формы зуба изменяются в желаемом направлении, а коэффициент торцевого перекрытия и толщины зубьев по окружностям вершин уменьшаются, что, при упрощенном рассмотрении, можно считать нежелательным. Критерии или качественные показатели, которые при принятом изменении параметров изменяются в желаемом направлении считаются непротиворечивыми (так как не противоречат друг другу), те критерии, которые при этом изменяются нежелательным образом, называются противоречивыми. При наличии противоречивых критериев эффективным методом поиска оптимума является метод "минимизации уступок". При этом методе вначале проводится оптимизация по каждому из рассматриваемых критериев, определяются значения критериев в оптимальных точках и ищутся значения параметров при которых отклонения каждого критерия от его оптимального значения будут минимальны. Необходимо отметить, что возможности параметрической оптимизации достаточно скромны. Обычно в среднем можно получить улучшение по каждому из показателей не более 10 - 20%. Более существенных результатов можно достичь при переходе к другой схеме или другому типу механизма. Кроме того при геометрическом синтезе зубчатой передаче сложно ориентироваться в сочетании качественных показателей. При анализе скольжения необходимо учитывать, что создание устойчивой масляной пленки в зоне контакта возможно при определенных значениях скорости скольжения. В полюсе зацепления скорость скольжения равна нулю и при прохождении полюса эта скорость изменяет свой знак. Поэтому в зубчатых передачах при дозаполюсном зацеплении в зоне близкой к полюсу происходит нарушение масляной пленки, что приводит к повышенному износу в этой зоне за счет контактного выкрашивания - питтинга. С этих позиций предпочтительными оказываются передачи с большими смещениями с до или заполюсным зацеплением, в которых скорость скольжения направлена в одну сторону, не имеет нулевых значений, поэтому условия для формирования масляной пленки более благоприятны.

Программное обеспечение САПР зубчатых передач.

В 70 - е годы были разработаны и приняты ГОСТ на терминологию, прочностные и геометрические расчеты эвольвентных зубчатых передач. Поэтому программное обеспечение САПР зубчатых передач по всем направлениям проводится по расчетным формулам и алгоритмам рекомендуемым ГОСТ. В ГОСТ предусмотрены два вида расчета геометрии:

  • по стандартному радиальному зазору в передаче;
  • по стандартной высоте зуба.

При изучении курса ТММ в МВТУ им. Баумана принят метод расчета по стандартной величине радиального зазора. Существующее на кафедре программное обеспечение разработано для этого вида расчета и обеспечивает расчет геометрии внешнего зацепления при фиксированном значении x2 = 0.5 и изменении x1 в диапазоне от 0 до 1.4 с шагом 0.1 . При выполнении курсового проекта по ТММ на основании этого расчета строятся графики качественных показателей, определяется область допустимых решений для коэффициента x1 и выбор этого по оптимальному сочетанию качественных показателей. На рис. 13.6 приведен пример графика. При принятых допустимых значениях

ограничения на выбор коэффициента смещения x1 :

по подрезанию X1min = 0.24 ;

по заострению колеса z1 : X1maxsa = 1.24;

по торцевому перекрытию : X1maxea = 0.84 .

Таким образом, область допустимых значений (ОДЗ), в которой можно выбирать значение x1 0.24 > x1 > 0.84 . этой области выбирается то значение x1 , которое обеспечивает наилучшее сочетание качественных показателей. Часто выбор коэффициента производят по рекомендациям ГОСТ. Для рассматриваемого случая силовой зубчатой передачи с числами зубьев z1 = 14 и z2 = 22

Косозубые цилиндрические эвольвентные передачи и особенности их расчета.

Косозубыми называются цилиндрические эвольвентные зубчатые передачи, боковая поверхность зуба которой образована наклонной прямой лежащей в производящей плоскости и образующей с линией касания с основным цилиндром угол bb ( см. схему на рис. 13.7). При этом эвольвентами основной окружности радиуса rb будут кривые лежащие в торцевой плоскости. Поэтому расчет геометрии цилиндрической косозубой передачи проводится по приведенным выше формулам для торцевого сечения. Для передачи с косыми зубьями нужно ввести несколько новых параметров:

осевой шаг - расстояние между одноименными линиями соседних винтовых зубьев по линии пересечения плоскости осевого сечения зубчатого колеса с делительной, начальной или другой соосной поверхностью. На рис. 13.7 справа изображены развертки делительного и начального цилиндров косозубого колеса. Из этой схемы:

Из схемы, изображенной на рис. 13.8

При нарезании косозубого колеса инструментальная рейка поворачивается на угол b, при этом стандартный исходный производящий контур располагается в нормальной плоскости, а в расчетной торцевой плоскости образуется другой, торцевой контур, параметры которого определим из схемы, приведенной на рис. 13.9.

Для высотных соотношений торцевого производящего контура:

Коэффициент осевого перекрытия.

В косозубых передачах величина коэффициента перекрытия увеличивается на величину торцевого перекрытия, которое (рис. 13.8) равно:

- угол осевого перекрытия для колеса z1 .

1. Для каких целей используются зубчатые механизмы? (стр.1)

2. Какая эвольвентная зубчатая передача называется передачей без смещения?(стр.1)

3. По каким признакам классифицируют зубчатые передачи?(стр.2)

4. Какие основные задачи решаются при проектировании эвольвентной передачи?(стр.2)

5. Перечислите основные качественные показатели цилиндрической эвольвентной передачи (стр.3)

6. Что показывает коэффициент перекрытия? (стр.3,4)

7. Что такое коэффициент торцевого перекрытия? Выведите формулу для ea.(стр.3)

8. Что называется косозубой эвольвентной зубчатой передачей?(стр.8)

9. Как записывается формула для коэффициента eb осевого перекрытия? (стр.10)

date image
2015-02-24 views image
10634

facebook icon
vkontakte icon
twitter icon
odnoklasniki icon



При проектировании зубчатой передачи может возникнуть необходимость изменить профиль зубьев за счет изменения параметров исходного контура (при методе обкатки). Применение не стандартных исходных контуров ограничивается необходимостью изготовления специального режущего и измерительного инструмента. Эта необходимость может возникнуть, например, при изготовлении колес с числом зубьев . При этом может оказаться, что головки зубьев инструмента врезаются в ножки зубьев изготовляемого колеса. Такое явление сопровождается срезанием части зуба в области ножки и ослаблением сечения, где действуют наибольшие напряжения. Это явление называется подрезанием зуба. Оно возникает тогда, когда линия или окружность вершин инструмента пересекает линию зацепления в точке (А) за пределами активного участка (точка М) (Рис 5.11). Для нарезания таких колес стандартным инструментом применяют смещение режущего инструмента относительно заготовки. Режущий инструмент располагают относительно заготовки так, чтобы делительная поверхность инструмента не касалась делительной окружности нарезаемого колеса на некоторое расстояние –x, называемого смещением исходного контура (Рис 5.13). При изготовлении колес со смещением профиль зуба изменяется за счет использования другого участка эвольвенты той же самой основной окружности. Определим необходимое смещение рейки при нарезании колеса стандартным инструментом при . На Рис 5.13 делительная прямая рейки смещена относительно делительной окружности колеса на величину смещения x, обеспечивающее предельное положение точки пересечения активного участка линии зацепления (N-N) с линией головок зубьев рейки (точки М).


Отрезок , как видно из Рис 5.13, равен:

Где - коэффициент смещения равный отношению смещения x к модулю зацепления m.

Отрезок равен радиусу делительной окружности нарезаемого колеса

Из треугольников и имеем:

Сокращая на величину модуля из полученного выражения можно получить

Что с учетом (5.20) будет

Передача, в которую входит хотя бы одно колесо, нарезанное со смещением, называется передачей со смещением.

Смещение рейки от оси колеса – передача с положительным смещением ( ), к оси – передача с отрицательным смещением ( ).

Применение передач со смещением позволяет:

- Устранить подрезание зубьев шестерни при , что позволяет уменьшить габариты шестерни.

- Вписать передачу в заданное межосевое расстояние при сохранении заданного передаточного отношения.

- Увеличить плавность зацепления, контактную и изгибную прочность зубьев, а также уменьшить скольжение и износ.

Комбинация различных зубчатых колес может дать передачу без смещения - ( ), равносмещенную – ( ),

С положительным смещением – ( ) и с отрицательным смещением – ( ).

Методика определения размеров зубчатых колес, нарезанных со смещением, зависит от вида зацепления и суммарного смещения. Для прямозубых эвольвентных колес с внешним зацеплением при известных и .

1. Вычисляем коэффициент суммарного смещения

2. Определяем эквивалентный инвалютный угол, соответствующий углу зацепления

Где: , , - профильный угол исходного контура.

По таблицам инвалют определяем .

3. Межосевое расстояние

4. Диаметры начальных окружностей:

Где - передаточное число.

При зацеплении колес со смещением наименьшее расстояние между делительными окружностями называется воспринимаемым смещением. Разность суммарного и воспринимаемого смещений – уравнительное смещение. Отношение воспринимаемого смещения к модулю – коэффициент воспринимаемого смещения

Отношение уравнительного смещения к модулю – коэффициент уравнительного смещения

5) Диаметры окружностей вершин и впадин

6) Делительная окружная толщина зуба




Анализируя эти формулы можно установить следующие особенности различных передач.

В передаче без смещения (

Делительная окружная толщина зуба .

Высота головки зуба .

Равносмещенная передача

В отличии от нулевой передачи в этом случае при одинаковой высоте зуба будут изменяться пропорции между высотой головки и ножки

Так для колеса с высота головки зуба будет больше, а высота ножки 0 меньше, чем для нулевой передачи.

Для колеса с наоборот.

Соответственно изменятся диаметры вершин и впадин , а так же диаметр делительной окружности и толщина зуба по делительной окружности ( .

Обычно шестерню изготавливают с положительным смещением, тем самым увеличивают ширину ножки зуба и увеличивают его прочность. При этом увеличивается коэффициент перекрытия.

Положительная передача( ).

При передаче с положительным суммарном смещением, как видно из соотношений (5.22=5.30), диаметры начальных окружностей больше делительных ( ), угол зацепления меньше станочного ( ), а межосевое расстояние, измеренное по начальным окружностям больше чем сумма радиусов делительных окружностей ( ). Соответственно изменяются высота зуба и пропорции между высотами головки и ножки зуба.

Отрицательная передача ( ).

При передаче с отрицательным суммарным смещением диаметры начальных окружностей меньше делительных ( ), угол зацепления больше станочного ( ), а межосевое расстояние, измеренное по начальным окружностям меньше чем сумма радиусов делительных окружностей ( ).

Зубчатые передачи являются неотъемлемой частью большинства механизмов и машин, используемых в промышленности, сельском хозяйстве, транспорте, в быту. Они применяются в качестве передаточного устройства для преобразования моментов или движения. Наиболее распространены эвольвентные цилиндрические передачи внешнего зацепления прямозубые и косозубые.

При проектировании зубчатых передач следует добиваться рационального варианта для заданных условий работы передачи в проектируемом механизме. Одновременно получить все наилучшие показатели качества в передаче невозможно, поэтому перед началом проектирования следует четко сформулировать требования по критериям оптимизации, т.к. от этого зависит назначение коэффициентов смещения исходного контура при нарезании зубчатого колеса. В случае свободного выбора межосевого расстояния имеется значительно больше возможностей для проектирования рациональной передачи, чем в случае фиксированного заданного межосевого расстояния.

В докладе кратко изложены алгоритмы геометрического расчёта передач и определения показателей их качества, которые зависят от параметров инструмента и его положения при нарезании зубчатых колёс.

Геометрический расчёт зубчатых передач выполняется в соответствии со стандартами традиционно. Расчёт с элементами оптимизации выполняется на персональном компьютере (ПК) в подсистеме «GCG&FQ» (Геометрический расчет зубчатой передачи и показателей качества) системы «КОБРА» по одному из следующих условий: минимальные габариты передачи, наибольший коэффициент перекрытия, наименьшее скольжение на ножке шестерни.

1. Определить суммарное число зубьев колес

(округлить до ближайшего целого числа).

Для прямозубой передачи принять угол наклона зуба .

2. Рассчитать число зубьев шестерни

(округлить до ближайшего целого числа).

Число зубьев должно быть больше минимального числа из условия отсутствия подрезания, определенного по уравнению (30)

Если это условие не выполняется, то следует изменить межосевое расстояние.

3. Определить число зубьев колеса:

4. При расчете зубчатых передач передаточное отношение можно выразить через отношение чисел зубьев:

Полученное значение необходимо сравнить с заданным передаточным отношением. Если расхождение составит более 5 %, следует изменить и в пределах .

5. Определить делительное межосевое расстояние

В зубчатой передаче без смещения межосевое расстояние равно делительному расстоянию:

6. Угол зацепления передачи найти по формуле

В зубчатой передаче без смещения угол зацепления равен углу профиля исходного контура:

7. Определить коэффициент суммы смещений:

Эвольвентные функции углов и другие тригонометрические функции определяются по специальной подпрограмме в системе «КОБРА» (рис. 1, 2).



Рис.1. Выбор подсистемы «Определение тригонометрических функций»



Рис.2. Определение тригонометрических функций

8. Выбрать коэффициенты смещения по ГОСТ 16532-70 в соответствии с заданными условиями проектирования или по одному из условий рационального проектирования в подсистеме «GCG&FQ» системы «КОБРА».

Для предварительного расчета коэффициент смещения шестерни можно определить по следующим условиям:

    • если , то ;
    • если , то ;
    • если , то .

9. Вычислить коэффициент смещения колеса:

10. Выполнить расчет основных геометрических параметров цилиндрической эвольвентой зубчатой передачи в соответствии с ГОСТ 16532-70. Расчетные формулы для цилиндрической прямозубой передачи приведены в таблице 1.

Основные термины, обозначения и расчетные зависимостигеометрических параметров зубчатой передачи

Окончание таблицы 4

11. Показатели качества зацеплений по геометрическим показателям определяются по ранее приведенным уравнениям:

    • толщина зубьев по окружности вершин для шестерни и колеса;
    • коэффициент торцового перекрытия;
    • удельное скольжение в точке на окружности вершин шестерни и колеса;
    • удельное скольжение в нижней точке активного профиля шестерни и колеса;
    • приведенный радиус кривизны передачи.

12. Если заданы особые критерии оптимизации, назначить и по блокирующим контурам [1], или, используя подсистему «GCG&FQ» (Геометрический расчёт зубчатой передачи и показателей качества) системы «КОБРА», выполнить расчёт с элементами оптимизации по заданным условиям.

Последовательность выполнения процедур геометрического расчёта зубчатой передачи и показателей качества в подсистеме «GCG&FQ» автоматизированной системы «КОБРА»

1. Выбрать в АСОО «КОБРА» меню «Расчёты», строки «СИСТЕМЫ АВТОМАТИЗАЦИИ ПРОЕКТИРОВАНИЯ», «Геометрический расчёт зубчатой передачи», подсистема «GCG&FQ». Появится экран для ввода параметров расчёта (рис. 3).



Рис.3. Экран ввода параметров зацепления и вывода результатов расчёта

2. Выбрать расчёт передачи «по известным коэффициентам смещения» (когда известны числа зубьев и коэффициенты смещения), отметить «галочкой» этот метод расчета.

3. Ввести параметры исходного контура инструмента и колес:

  • коэффициент высоты головки зуба ;
  • коэффициент радиального зазора ;
  • профильный угол инструментальной рейки ;
  • модуль зацепления (стандартное значение);
  • коэффициенты смещения инструмента и ;
  • числа зубьев колёс и .

4. После нажатия на кнопку «Расчёт» на экран выводятся результаты расчёта:

  • исходные данные для расчета;
  • основные параметры зубчатой передачи;
  • геометрические размеры зубчатых колес;
  • таблица значений коэффициентов скольжения и приведенных радиусов кривизны.

5. Выбрать кнопки «Схема зацепления» и «Play», на экране появится динамическая визуализация процесса зацепления.

Клавишами «+W» и «–W» можно менять направление вращения колёс, клавишами «+» и «–» увеличивать или уменьшать изображение (рис. 4). На схеме показаны: межосевое расстояние ; теоретический участок линии зацепления ; рабочий участок линии зацепления , полюс зацепления .



Рис.4. Вывод динамической визуализации зацепления

6. Графики коэффициентов скольжения и приведенных радиусов кривизны можно получить, нажав на клавишу «График скольжения / кривизны» (рис. 5).



Рис.5. Вывод графиков скольжения и приведённого радиуса кривизны

7. После нажатия клавиши «Файл» появляется экран для выбора параметров печати результатов (рис. 6).



Рис.6. Экран выбора параметров вывода результатов расчёта на печать

Показатели качества дают возможность оценить передачу в отношении плавности и бесшумности зацепления, возможного износа и прочности зубьев, а также сравнить ряд передач по этим показателям.

Достоинства:
практически неограниченная передаваемая мощность
малые габариты и вес
стабильное передаточное отношение
высокий КПД, который составляет в среднем 0,97 — 0,98

Недостатки:
шум в работе на высоких скоростях (может быть снижен при применении зубьев соответствующей геометрической формы и улучшении качества обработки профилей зубьев)

Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния

При высоких угловых скоростях вращения рекомендуется применять косозубые шестерни, в которых зубья входят о зацепление плавно, что и обеспечивает относительно бесшумную работу.
Недостатком косозубых шестерен является наличие осевых усилий, которые дополнительно нагружают подшипники. Этот недостаток можно устранить, применив сдвоенные шестерни с равнонаправленными спиралями зубьев или шевронные шестерни.
Шевронные шестерни, ввиду высокой стоимости и трудности изготовления применяются сравнительно редко — лишь для уникальных передач большой мощности.
При малых угловых скоростях вращения применяются конические прямозубые шестерни, при больших — шестерни с круговым зубом, которые в настоящее время заменили конические косозубые шестерни, применяемые ранее.
Конические гипоидные шестерни тоже имеют круговой зуб, однако оси колес в них смещены, что создает особенно плавную и бесшумную работу. Передаточное отнесение в зубчатых парах колеблется в широких пределах, однако обычно оно равно 3 — 5

Основные определения из теории зацепления шестерен

Начальными называются воображаемые окружности, которые при зацеплении шестерен катятся без скольжения одна по другой

Делительными называются воображаемые окружности, по которым происходит номинальное деление зубьев. Для них справедливо уравнение:
d д = mZ
Если шестерни не имеют коррекции, то начальные и делительные окружности совпадают

Окружностями выступов и впадин называются окружности, ограничивающие вершины и впадины зубьев

Основными называются окружности, по которым развертываются эвольвенты, очерчивающие профили зубьев
d 0 = d д cosα

Шагом t называется расстояние по дуге делительной окружности между одноименными профилями соседних зубьев

Основным шагом t 0 называется шаг по основной окружности

Модулем называется отношение диаметра делительной окружности к числу зубьев или шага к π

Ритчем р называется число зубьев, приходящееся на один дюйм делительной окружности

РИТЧ

Линией зацепления ЛЗ называется геометрическое место точек контакта зубьев в зацеплении. В эвольвентном зацеплении ЛЗ — прямая, нормальная к профилю зубьев в полюсе зацепления и касательная к основным окружностям

Углом зацепления α называется угол между линией зацепления и перпендикуляром к линии центров

Углом наклона спирали зубьев косозубых шестерен β называется угол между осью зуба и образующей делительного цилиндра или конуса

Коэффициентом перекрытия ε называется отношение дуги зацепления к основному шагу

Коэффициентом коррекции ξ называется отношение величины профильного смещения к модулю

Материал и термообработка шестерен

Стальные шестерни изготавливаются из качественных и легированных сталей с термообработкой.
Наибольшее распространение получили: для серийного производства — улучшение; для серийного и массового — цементация и закалка (при наличии соответствующего оборудования — закалка токами высокой частоты)

Термообработка Твердость Материал Примечания
Улучшение (закалка до малой твердости) НB
260-300
Сталь 40
Сталь 45
Cталь 40X
Сталь 45Х
Окончательная нарезка зубьев после термообработки во избежание коробления
Закалка HRC
40-50
Сталь 40Х
Сталь 40ХН
Необходима шлифовка зубьев по профилю для устранения коробления
Цементация и закалка HRC
56-63
Сталь 20Х
Сталь 18ХГТ
12ХНЗА
20ХНЗА
18ХНЗА
Окончательная обработка зубьев до термообработки. Коробление невелико
Закалка ТВЧ НRC
50-60
Сталь 45
Сталь 40Х
Только для крупных шестерен с модулем > 8

Расчетные геометрические зависимости

Прямозубые и косозубые цилиндрические шестерни

Передаточное отношение i :

где, f 0 — коэффициент высоты зуба; t и m — нормальный шаг и модуль; t s и m s — торцевой шаг и модуль; β — угол спирали зуба

Ряд наиболее распространенных стандартных модулей:
… 1; 1,5; 2; 2,5; 3; 3,5; 4; 4,5; 5; 6; 7; 8; 10; 12 …
Стандартный угол зацепления α — 20°. Для бесшумной и плавной работы косозубых шестерен необходимо перекрытие зубьев: последующий зуб должен входить в зацепление раньше, чем выйдет из зацепления предыдущий

Прямозубые конические шестерни

Все o6paзующие зубьев сходятся в одной точке пересечения осей. Номинальный делительный диаметр, шаг и модуль отсчитываются по большому основанию делительного конуса

Передаточное отношение i:


Средний диаметр и модуль:

где, m c — средний модуль;
L — конусное расстояние — длина образующей делительного конуса;
b — ширина зубьев шестерен;
γ — углы конусности

Силы, действующие в зацеплении шестерен

Прямозубые цилиндрические шестерни

Нормальная сила, действующая по линии зацепления, разлагается на две составляющие силы:
P = P ncosα — окружное усилие;
R = P nsinα — радиальное усилие

На валы действуют те же силы, что и на зубья шестерен, и, кроме того, еще крутящий момент:

Косозубые цилиндрические шестерни

Здесь, вследствие наклона зубьев к образующей, дополнительно возникает еще осевое усилие
окружное усилие

радиальное усилие:

осевое усилие:

нормальное усилие:

Силы P, R, A необходимо определить для расчета валов и подшипников, сила P n необходима для расчета зубьев шестерен на прочность. Силу A можно уравновесить, применив сдвоенные косозубые шестерни с разнонаправленными спиралями зубьев или шевронные

Конические прямозубые шестерни

Осевое усилие для шестерни или радиальное для колеса: Aш = Rк = R sinγш = P tgα sinγш
Радиальное усилие для шестерни или осевое для колеса: Rш = Aк = R cosγш = P tgα cosγш
Нормальное усилие:

Силы Р, Aш, Rш — для расчета валов и подшипников, cила Рn — для расчета зубьев на прочность;
dэ, Zэ — диаметры и числа зубьев эквивалентных цилиндрических колес

Воображаемые эквивалентные цилиндрические колеса строятся в плоскости мгновенного зацепления основных конических колес так, что оси тех и других совпадают. Работают эти колеса точно так же, как и основные конические, поэтому такое построение удобно использовать для выяснения действующих сил и напряжений в конических колесах

Дефекты шестерен

Закрытыми называются передачи, заключенные в пыленепроницаемый закрытый корпус, с организованной смазкой.
Открытыми называются передачи, не защищенные от пыли, с нерегулярной смазкой

Износ поверхностей зубьев — очень значительный в открытых передачах и небольшой в закрытых. Меры борьбы с износом — повышение поверхностной твердости зубьев

Питинг — поверхностное выкрашивание зубьев в зоне полосной линии. Возникает вследствие усталости поверхностного слоя зубьев в результате высоких контактных напряжений. Питинг начинается с образования усталостных микротрещин, которые под влиянием циклических нагрузок постепенно развиваются, чему способствует высокое давление масла в зоне контакта зубьев. В открытых передачах питинг обычно не возникает, так как микротрещины изнашиваются раньше, чем успеют развиться.
Меры борьбы с питингом заключаются в повышении жесткости корпусов, валов и опор и точности их изготовления с целью увеличения площадок контакта зубьев

Усталостная изгибная поломка зубьев.
Меры борьбы — увеличение модуля или улучшение качества материала и термообработки

Задиры поверхностей зубьев могут иметь место в тихоходных сильно нагруженных передачах.
Меры борьбы — применение противозадирных смазок, содержащих животные жиры и графит

Расчет зубьев цилиндрических прямозубых шестерен

Расчет на контактную прочность поверхности зубьев

Расчет базируется на известной формуле Герца для контактного сжатия цилиндров с параллельными осями:

Характерными особенностями контактного сжатия являются:
а) весьма ограниченная площадь контакта я а связи с этим высокие напряжения;
б) объемный характер напряженного состояния;
в) эллиптическая эпюра контактных напряжений, распространяющаяся только на зону контакта
Теоретически интенсивность нагрузки:

Выразим r м и r к через межцентровое расстояние А:

В действительности расчетная интенсивность нагрузки будет отличаться от теоретической на величину поправочных коэффициентов Кк и Кд

Здесь: Кк — коэффициент концентрации нагрузки, выражающий неполноту контакта по линии. Он зависит от деформации валов и ширины шестерен. Кд — коэффициент динамичности нагрузки, зависящий от окружной скорости и чистоты обработки поверхности зубьев.

Приведенная кривизна зубьев шестерен в точке контакта

(Знак минус для внутреннего зацепления).

Здесь: ρш и ρк — мгновенные радиусы кривизны в полосе зацепления

Приведенный модуль упругости:

Здесь: Еш и Ек — модули упругости материала шестерни и колеса.

Если обе шестерни изготовлены из одного материала, то в формулу подставляется:

Подставляя в основную формулу все величины, получим

Выразив крутящий момент на оси колеса через мощность в кВт:

Получаем проверочную формулу в окончательном виде:

По этой формуле можно проверить и сравнить с допускаемыми, действующие в данной передаче, контактные напряжения.

Для проектного расчета эта формула преобразуется, для чего ширина шестерни выражается через межцентровое расстояние.

Коэффициент относительной ширины

Для редукторов в среднем ψ = 0,2 ÷ 0,4.
Для коробок передач ψ = 0,1 ÷ 0,2.
Здесь: b — ширина шестерни в см;
А — межцентровое расстояние в см;
nк — число оборотов в минуту вала колеса;
N — мощность на валу колеса в кВт;
[σ] — допускаемое контактное напряжение.
По полученной величине межцентрового расстояния можно подобрать модуль, задавшись числом зубьев малой шестерни Zш = 17 — 25 (с коррекцией Z ≥ 14)

Определение допускаемых контактных напряжений

При циклических нагрузках допускаемые напряжения зависят не только от материала и термообработки, но также и от числа циклов нагружения (времени работы), которое в формуле фигурирует в виде коэффициента режима нагрузки Кр

[σ]к = [σ]таб Кр
где [σ]таб — табличное допускаемое напряжение;
[σ]таб = С1 НВ — для улучшенных сталей;
[σ]таб = С2 HRC — для цементированных и закаленных сталей.
Здесь: С1 и С2 — табличные коэффициенты, зависящие от принятого материала и термообработки.
При постоянном режиме нагрузки:

Nц = 60nt – число циклов нагружения

При переменном режиме нагрузки:

где Mi, ni, ti — крутящий момент, число оборотов и время работы в часах на каждой ступени усредненного графика нагрузки.
Минимальные значения Кp ограничены наступлением длительного предела выносливости. Для улучшенных сталей Кp ≥ 1, для цементированных и закаленных сталей Кp ≥ 0,59

Расчет на усталостный изгиб зубьев

Опасным нагружением считается такое, которое соответствует моменту начала входа зуба в зацепление. Интенсивность нагрузки q p создает две составляющие, из которых одна сжимает, а другая нагибает зуб.
Опасным сечением считается сечение у корня зуба со стороны растянутых волокон, так как закаленные стальные зубья слабее сопротивляются растяжению, чем сжатию
αl — угол зацепления при вершине зуба

Здесь: y — коэффициент формы зуба; определяется по таблицам или графикам в зависимости от числа зубьев и коэффициента коррекции (если она есть).
Подставив значение q, введенное ране, получаем проверочную формулу:

Для проектных расчетов формула преобразуется с введением коэффициента относительной модульной ширины шестерни:

Выражая величины А и b через модуль, получаем проектную формулу:

Обычно шестерни закрытых передач рассчитываются на контактную прочность (опасным является питинг) и проверяются на изгиб; шестерни открытых передач, для которых питинг не опасен, рассчитываются только на изгиб

Определение допускаемых напряжений изгиба

Допускаемые напряжения определяются как часть от предела усталости (выносливости) материала при симметричном цикле нагружения

для нереверсивных передач

для реверсивных передач

Здесь: n1 — коэффициент запаса прочности по пределу усталости, Кσ — коэффициент концентрации напряжений у ножки зуба, Kрн — коэффициент режима нагрузки по изгибу, можно принимать его равным 1 для большинства передач (только для очень тихоходных передач он может быть больше единицы)

Особенности расчета косозубых цилиндрических шестерен

Принципиально расчетные формулы для косозубых шестерен те же, что и для прямозубых, отличие заключается в следующем:

Оценочный параметр Прямозубые Косозубые
Нагрузка на зуб
Длина контактных линий

Особенности расчета конических прямозубых шестерен

Конические шестерни рассчитываются как эквивалентные им цилиндрические.
Окружное усилие определяется по среднему диаметру, расчетным является средний модуль. При определении коэффициента формы зуба принимается эквивалентное число зубьев

Коррекция зубьев шестерен

В целях уменьшения габаритов и веса машин желательно у малых шестерен число зубьев делать минимальным, однако этому препятствует подрез ножки зуба, который для эвольвентного двадцатиградусного зацепления имеет место при Z < 17 зубьев. Вводя коррекцию (теоретическое исправление профиля), можно уменьшить Zmin до 14 зубьев и даже менее

Угловая коррекция (фау-коррекция) заключается в смещении профиля зубьев малой шестерни в плюс (от центра) на величину:
V = ξ m
где ξ — коэффициент коррекции

При этом увеличивается на величину V межцентровое расстояние, а также угол зацепления, так как при раздвижке центров раздвигаются соответственно и основные окружности, к которым касательна линия зацепления

Высотная коррекция (фау-нуль-коррекция), при которой профиль зубьев малой шестерни смещается в плюс (+V), а профиль зубьев колеса на столько же — в минус (-V). При этом межцентровое расстояние и угол зацепление не меняются, изменяются лишь относительная высота головки и ножки зубьев.
Изготовление корригированных шестерен не представляет никаких трудностей

КПД зубчатых передач

Для закрытых передач в среднем:
цилиндрических η =0,98
конических η = 0,97
Для открытых передач:
цилиндрических η = 0,97
конических η = 0,96
Эти цифры включают также потери в опорах качения, которые невелики и составляют от 0,25 до 0,5 % на опору при надежной смазке

Достоинства:
практически неограниченная передаваемая мощность
малые габариты и вес
стабильное передаточное отношение
высокий КПД, который составляет в среднем 0,97 — 0,98

Недостатки:
шум в работе на высоких скоростях (может быть снижен при применении зубьев соответствующей геометрической формы и улучшении качества обработки профилей зубьев)

Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния

При высоких угловых скоростях вращения рекомендуется применять косозубые шестерни, в которых зубья входят о зацепление плавно, что и обеспечивает относительно бесшумную работу.
Недостатком косозубых шестерен является наличие осевых усилий, которые дополнительно нагружают подшипники. Этот недостаток можно устранить, применив сдвоенные шестерни с равнонаправленными спиралями зубьев или шевронные шестерни.
Шевронные шестерни, ввиду высокой стоимости и трудности изготовления применяются сравнительно редко — лишь для уникальных передач большой мощности.
При малых угловых скоростях вращения применяются конические прямозубые шестерни, при больших — шестерни с круговым зубом, которые в настоящее время заменили конические косозубые шестерни, применяемые ранее.
Конические гипоидные шестерни тоже имеют круговой зуб, однако оси колес в них смещены, что создает особенно плавную и бесшумную работу. Передаточное отнесение в зубчатых парах колеблется в широких пределах, однако обычно оно равно 3 — 5

Основные определения из теории зацепления шестерен

Начальными называются воображаемые окружности, которые при зацеплении шестерен катятся без скольжения одна по другой

Делительными называются воображаемые окружности, по которым происходит номинальное деление зубьев. Для них справедливо уравнение:
d д = mZ
Если шестерни не имеют коррекции, то начальные и делительные окружности совпадают

Окружностями выступов и впадин называются окружности, ограничивающие вершины и впадины зубьев

Основными называются окружности, по которым развертываются эвольвенты, очерчивающие профили зубьев
d 0 = d д cosα

Шагом t называется расстояние по дуге делительной окружности между одноименными профилями соседних зубьев

Основным шагом t 0 называется шаг по основной окружности

Модулем называется отношение диаметра делительной окружности к числу зубьев или шага к π

Ритчем р называется число зубьев, приходящееся на один дюйм делительной окружности

РИТЧ

Линией зацепления ЛЗ называется геометрическое место точек контакта зубьев в зацеплении. В эвольвентном зацеплении ЛЗ — прямая, нормальная к профилю зубьев в полюсе зацепления и касательная к основным окружностям

Углом зацепления α называется угол между линией зацепления и перпендикуляром к линии центров

Углом наклона спирали зубьев косозубых шестерен β называется угол между осью зуба и образующей делительного цилиндра или конуса

Коэффициентом перекрытия ε называется отношение дуги зацепления к основному шагу

Коэффициентом коррекции ξ называется отношение величины профильного смещения к модулю

Материал и термообработка шестерен

Стальные шестерни изготавливаются из качественных и легированных сталей с термообработкой.
Наибольшее распространение получили: для серийного производства — улучшение; для серийного и массового — цементация и закалка (при наличии соответствующего оборудования — закалка токами высокой частоты)

Термообработка Твердость Материал Примечания
Улучшение (закалка до малой твердости) НB
260-300
Сталь 40
Сталь 45
Cталь 40X
Сталь 45Х
Окончательная нарезка зубьев после термообработки во избежание коробления
Закалка HRC
40-50
Сталь 40Х
Сталь 40ХН
Необходима шлифовка зубьев по профилю для устранения коробления
Цементация и закалка HRC
56-63
Сталь 20Х
Сталь 18ХГТ
12ХНЗА
20ХНЗА
18ХНЗА
Окончательная обработка зубьев до термообработки. Коробление невелико
Закалка ТВЧ НRC
50-60
Сталь 45
Сталь 40Х
Только для крупных шестерен с модулем > 8

Расчетные геометрические зависимости

Прямозубые и косозубые цилиндрические шестерни

Передаточное отношение i :

где, f 0 — коэффициент высоты зуба; t и m — нормальный шаг и модуль; t s и m s — торцевой шаг и модуль; β — угол спирали зуба

Ряд наиболее распространенных стандартных модулей:
… 1; 1,5; 2; 2,5; 3; 3,5; 4; 4,5; 5; 6; 7; 8; 10; 12 …
Стандартный угол зацепления α — 20°. Для бесшумной и плавной работы косозубых шестерен необходимо перекрытие зубьев: последующий зуб должен входить в зацепление раньше, чем выйдет из зацепления предыдущий

Прямозубые конические шестерни

Все o6paзующие зубьев сходятся в одной точке пересечения осей. Номинальный делительный диаметр, шаг и модуль отсчитываются по большому основанию делительного конуса

Передаточное отношение i:


Средний диаметр и модуль:

где, m c — средний модуль;
L — конусное расстояние — длина образующей делительного конуса;
b — ширина зубьев шестерен;
γ — углы конусности

Силы, действующие в зацеплении шестерен

Прямозубые цилиндрические шестерни

Нормальная сила, действующая по линии зацепления, разлагается на две составляющие силы:
P = P ncosα — окружное усилие;
R = P nsinα — радиальное усилие

На валы действуют те же силы, что и на зубья шестерен, и, кроме того, еще крутящий момент:

Косозубые цилиндрические шестерни

Здесь, вследствие наклона зубьев к образующей, дополнительно возникает еще осевое усилие
окружное усилие

радиальное усилие:

осевое усилие:

нормальное усилие:

Силы P, R, A необходимо определить для расчета валов и подшипников, сила P n необходима для расчета зубьев шестерен на прочность. Силу A можно уравновесить, применив сдвоенные косозубые шестерни с разнонаправленными спиралями зубьев или шевронные

Конические прямозубые шестерни

Осевое усилие для шестерни или радиальное для колеса: Aш = Rк = R sinγш = P tgα sinγш
Радиальное усилие для шестерни или осевое для колеса: Rш = Aк = R cosγш = P tgα cosγш
Нормальное усилие:

Силы Р, Aш, Rш — для расчета валов и подшипников, cила Рn — для расчета зубьев на прочность;
dэ, Zэ — диаметры и числа зубьев эквивалентных цилиндрических колес

Воображаемые эквивалентные цилиндрические колеса строятся в плоскости мгновенного зацепления основных конических колес так, что оси тех и других совпадают. Работают эти колеса точно так же, как и основные конические, поэтому такое построение удобно использовать для выяснения действующих сил и напряжений в конических колесах

Дефекты шестерен

Закрытыми называются передачи, заключенные в пыленепроницаемый закрытый корпус, с организованной смазкой.
Открытыми называются передачи, не защищенные от пыли, с нерегулярной смазкой

Износ поверхностей зубьев — очень значительный в открытых передачах и небольшой в закрытых. Меры борьбы с износом — повышение поверхностной твердости зубьев

Питинг — поверхностное выкрашивание зубьев в зоне полосной линии. Возникает вследствие усталости поверхностного слоя зубьев в результате высоких контактных напряжений. Питинг начинается с образования усталостных микротрещин, которые под влиянием циклических нагрузок постепенно развиваются, чему способствует высокое давление масла в зоне контакта зубьев. В открытых передачах питинг обычно не возникает, так как микротрещины изнашиваются раньше, чем успеют развиться.
Меры борьбы с питингом заключаются в повышении жесткости корпусов, валов и опор и точности их изготовления с целью увеличения площадок контакта зубьев

Усталостная изгибная поломка зубьев.
Меры борьбы — увеличение модуля или улучшение качества материала и термообработки

Задиры поверхностей зубьев могут иметь место в тихоходных сильно нагруженных передачах.
Меры борьбы — применение противозадирных смазок, содержащих животные жиры и графит

Расчет зубьев цилиндрических прямозубых шестерен

Расчет на контактную прочность поверхности зубьев

Расчет базируется на известной формуле Герца для контактного сжатия цилиндров с параллельными осями:

Характерными особенностями контактного сжатия являются:
а) весьма ограниченная площадь контакта я а связи с этим высокие напряжения;
б) объемный характер напряженного состояния;
в) эллиптическая эпюра контактных напряжений, распространяющаяся только на зону контакта
Теоретически интенсивность нагрузки:

Выразим r м и r к через межцентровое расстояние А:

В действительности расчетная интенсивность нагрузки будет отличаться от теоретической на величину поправочных коэффициентов Кк и Кд

Здесь: Кк — коэффициент концентрации нагрузки, выражающий неполноту контакта по линии. Он зависит от деформации валов и ширины шестерен. Кд — коэффициент динамичности нагрузки, зависящий от окружной скорости и чистоты обработки поверхности зубьев.

Приведенная кривизна зубьев шестерен в точке контакта

(Знак минус для внутреннего зацепления).

Здесь: ρш и ρк — мгновенные радиусы кривизны в полосе зацепления

Приведенный модуль упругости:

Здесь: Еш и Ек — модули упругости материала шестерни и колеса.

Если обе шестерни изготовлены из одного материала, то в формулу подставляется:

Подставляя в основную формулу все величины, получим

Выразив крутящий момент на оси колеса через мощность в кВт:

Получаем проверочную формулу в окончательном виде:

По этой формуле можно проверить и сравнить с допускаемыми, действующие в данной передаче, контактные напряжения.

Для проектного расчета эта формула преобразуется, для чего ширина шестерни выражается через межцентровое расстояние.

Коэффициент относительной ширины

Для редукторов в среднем ψ = 0,2 ÷ 0,4.
Для коробок передач ψ = 0,1 ÷ 0,2.
Здесь: b — ширина шестерни в см;
А — межцентровое расстояние в см;
nк — число оборотов в минуту вала колеса;
N — мощность на валу колеса в кВт;
[σ] — допускаемое контактное напряжение.
По полученной величине межцентрового расстояния можно подобрать модуль, задавшись числом зубьев малой шестерни Zш = 17 — 25 (с коррекцией Z ≥ 14)

Определение допускаемых контактных напряжений

При циклических нагрузках допускаемые напряжения зависят не только от материала и термообработки, но также и от числа циклов нагружения (времени работы), которое в формуле фигурирует в виде коэффициента режима нагрузки Кр

[σ]к = [σ]таб Кр
где [σ]таб — табличное допускаемое напряжение;
[σ]таб = С1 НВ — для улучшенных сталей;
[σ]таб = С2 HRC — для цементированных и закаленных сталей.
Здесь: С1 и С2 — табличные коэффициенты, зависящие от принятого материала и термообработки.
При постоянном режиме нагрузки:

Nц = 60nt – число циклов нагружения

При переменном режиме нагрузки:

где Mi, ni, ti — крутящий момент, число оборотов и время работы в часах на каждой ступени усредненного графика нагрузки.
Минимальные значения Кp ограничены наступлением длительного предела выносливости. Для улучшенных сталей Кp ≥ 1, для цементированных и закаленных сталей Кp ≥ 0,59

Расчет на усталостный изгиб зубьев

Опасным нагружением считается такое, которое соответствует моменту начала входа зуба в зацепление. Интенсивность нагрузки q p создает две составляющие, из которых одна сжимает, а другая нагибает зуб.
Опасным сечением считается сечение у корня зуба со стороны растянутых волокон, так как закаленные стальные зубья слабее сопротивляются растяжению, чем сжатию
αl — угол зацепления при вершине зуба

Здесь: y — коэффициент формы зуба; определяется по таблицам или графикам в зависимости от числа зубьев и коэффициента коррекции (если она есть).
Подставив значение q, введенное ране, получаем проверочную формулу:

Для проектных расчетов формула преобразуется с введением коэффициента относительной модульной ширины шестерни:

Выражая величины А и b через модуль, получаем проектную формулу:

Обычно шестерни закрытых передач рассчитываются на контактную прочность (опасным является питинг) и проверяются на изгиб; шестерни открытых передач, для которых питинг не опасен, рассчитываются только на изгиб

Определение допускаемых напряжений изгиба

Допускаемые напряжения определяются как часть от предела усталости (выносливости) материала при симметричном цикле нагружения

для нереверсивных передач

для реверсивных передач

Здесь: n1 — коэффициент запаса прочности по пределу усталости, Кσ — коэффициент концентрации напряжений у ножки зуба, Kрн — коэффициент режима нагрузки по изгибу, можно принимать его равным 1 для большинства передач (только для очень тихоходных передач он может быть больше единицы)

Особенности расчета косозубых цилиндрических шестерен

Принципиально расчетные формулы для косозубых шестерен те же, что и для прямозубых, отличие заключается в следующем:

Оценочный параметр Прямозубые Косозубые
Нагрузка на зуб
Длина контактных линий

Особенности расчета конических прямозубых шестерен

Конические шестерни рассчитываются как эквивалентные им цилиндрические.
Окружное усилие определяется по среднему диаметру, расчетным является средний модуль. При определении коэффициента формы зуба принимается эквивалентное число зубьев

Коррекция зубьев шестерен

В целях уменьшения габаритов и веса машин желательно у малых шестерен число зубьев делать минимальным, однако этому препятствует подрез ножки зуба, который для эвольвентного двадцатиградусного зацепления имеет место при Z < 17 зубьев. Вводя коррекцию (теоретическое исправление профиля), можно уменьшить Zmin до 14 зубьев и даже менее

Угловая коррекция (фау-коррекция) заключается в смещении профиля зубьев малой шестерни в плюс (от центра) на величину:
V = ξ m
где ξ — коэффициент коррекции

При этом увеличивается на величину V межцентровое расстояние, а также угол зацепления, так как при раздвижке центров раздвигаются соответственно и основные окружности, к которым касательна линия зацепления

Высотная коррекция (фау-нуль-коррекция), при которой профиль зубьев малой шестерни смещается в плюс (+V), а профиль зубьев колеса на столько же — в минус (-V). При этом межцентровое расстояние и угол зацепление не меняются, изменяются лишь относительная высота головки и ножки зубьев.
Изготовление корригированных шестерен не представляет никаких трудностей

КПД зубчатых передач

Для закрытых передач в среднем:
цилиндрических η =0,98
конических η = 0,97
Для открытых передач:
цилиндрических η = 0,97
конических η = 0,96
Эти цифры включают также потери в опорах качения, которые невелики и составляют от 0,25 до 0,5 % на опору при надежной смазке

Читайте также: