Определение толщины зуба по любой концентрической окружности

Опубликовано: 29.04.2024

date image
2015-01-30 views image
3237

facebook icon
vkontakte icon
twitter icon
odnoklasniki icon



Рис. 5.10. К определению толщины зуба колеса по делительной окружности.

Толщина зуба (рис. 5.10) у нулевого колеса т.е. при , измеренная по начальной окружности равна

и соответствует ширине впадины на рейке, измеренной по прямой, перекатывающейся по начальной окружности обработки (делительной окружности), которая в этом случае совпадает с начальной окружностью колеса. Дадим рейке смещение вдоль оси , равное . Это положение показано на рис. 9.11 штриховой линией. Тогда толщина зуба колеса (или ширины впадины на производящей рейке), измеренная по делительной окружности, будет равна

При сдвиге рейки т. B переместится в положение , а т. С – в положение . Очевидно, что отрезки и равны, т.е. . Из прямоугольного имеем , где - выбранный угол зацепления при нарезании колеса (обычно ). Или т.к. и , то

Величина сдвига x, являясь величиной алгебраической, может иметь знак плюс или минус. Подставляя полученное выражение в равенство (9.29) и учитывая выражение (9.28), получаем

Толщина зуба , измеренная по любой окружности радиуса (рис. 5.11 и 5.12), определяется из следующих условий. Сумма углов и равна , откуда при

Рис. 5.11. К определению толщины зуба колеса по окружности произвольно заданного радиуса.

Рис.5.12. К выводу формулы для определения монтажного угла зацепления

Далее, используя функцию, описывающую эвольвенту боковой поверхности зуба:

Подставляя в формулу (5.33) вместо выражение (5.31) получаем окончательно

где угол определяется из условия (рис. 5.11)

С помощью формулы (5.34) может быть определена толщина зуба на окружности любого заданного радиуса .

Формулы (5.33) и (5.34) позволяют проверить, не имеет ли зуб заострения, т.е. не пересекаются ли боковые профили зуба в т. D (рис.5.11). На окружности заострения (рис. 5.11) толщина зуба равна нулю. Следовательно, в равенстве (5.33) следует положить , , где - радиус окружности заострения и откуда

т.к. , то определив угол , можно найти величину радиуса окружности заострения из условия .

Обычно толщина зуба по окружности выступов не должна быть меньше (0,25…0,3)m.

5.12. Определение угла зацепления для колёс, нарезанных со сдвигом рейки

Угол зацепления , совпадает с углом зацепления только для нулевых колес. Величину этого угла определяем из следующих условий.

По формуле (5.33) размеры толщины и зубьев колёс 1 и 2 (рис.9.12), измеренные по начальным окружностям, равны

где и - толщины зубьев 1 и 2, измеренные по их делительным окружностям радиусов и .

Т.к. при беззазорном зацеплении толщина зуба по начальной окружности одного колеса равна ширине впадины другого колеса и

то, подставляя в равенство (5.36) вместо и их значения получаем

Принимая во внимание, что и , после преобразований, выразив уравнение (5.37) через , получаем

подставляя в формулу (5.38) величины и , определяемые по формуле (5.31),

и величину , равную ,

Анализ зависимости (5.39) показывает, что с увеличением суммарного сдвига увеличивается и монтажный угол зацепления. Из формулы (5.39) также следует, что для нулевой передачи, когда-либо , или , всегда имеем

Рис. 5.13. к определению расстояние между центрами колёс.

Эвольвентным зубчатым колесом называют звено зубчатого механизма, снабженное замкнутой системой зубьев. При проектировании зубчатого колеса вначале нужно определить его число зубьев z , а затем определить параметры зубьев. Для этого нужно произвольную окружность колеса r y разделить на z частей, каждая из которых называется окружным шагом p y .

где m y = p y / p = d y / z - модуль зацепления по окружности произвольного радиуса.

Модулем зацепления называется линейная величина в p раз меньшая окружного шага или отношение шага по любой концентрической окружности зубчатого колеса к p . В зависимости от окружности по которой определен модуль различают делительный, основной, начальный. Для косозубых колес еще и нормальный, торцевой и осевой модули. В ряде стран используется величина обратная модулю, которая называется питчем. Питч (диаметральный) - число зубьев колеса, приходящееся на дюйм диаметра. Исходя из этого модуль можно определить как число милиметров диаметра, приходящееся на один зуб. На колесе можно провести бесчисленное число окружностей на каждой из которых будет свой модуль. Для ограничения этого числа ГОСТом введен стандартный ряд модулей. Стандартной модуль определяется по окружности называемой делительной. Точнее делительной называется такая окружность зубчатого колеса, на которой модуль и шаг принимают стандартное значение. Окружным шагом или шагом называется расстояние по дуге окружности между одноименными точками профилей соседних зубьев (под одноименными понимаются правые или левые профили зуба). Угловой шаг t - центральный угол соответствующий дуге p - окружному шагу по делительной окружности.

Примечание: Согласно ГОСТ основные элементы зубчатого колеса обозначаются по следующим правилам: линейные величины - строчными буквами латинского алфавита, угловые - греческими буками; установлены индексы для величин :

по окружностям: делительной - без индекса, вершин - a , впадин - f , основная - b , начальная - w , нижних точек активных профилей колес - p , граничных точек - l ;

по сечениям: нормальное сечение - n , торцевое сечение - t , осевое сечение - x ;

относящихся к зуборезному инструменту - 0 .

Для параметров зубчатого колеса справедливы следующие соотношения

- диаметр окружности произвольного радиуса,

- диаметр делительной окружности,

- шаг по окружности произвольного радиуса,

- шаг по делительной окружности,

где a - угол профиля на делительной окружности,

a y - угол профиля на окружности произвольного радиуса.

Углом профиля называется острый угол между касательной к профилю в данной точки и радиусом - вектором, проведенным в данную точку из центра колеса.

Шаг колеса делится на толщину зуба s y и ширину впадины e y . Толщина зуба s y - расстояние по дуге окружности r y между разноименными точками профилей зуба. Ширина впадины e y - расстояние по дуге окружности r y между разноименными точками профилей соседних зубьев.

На основной окружности a b => 0 и cos a b => 1 , тогда

В зависимости от соотношения между толщиной зуба и шириной впадины на делительной окружности зубчатые колеса делятся на:

нулевые s = e = p * m / 2 , D = 0;

положительные s > e , => D > 0;

отрицательные s D D - коэффициент изменения толщины зуба (отношение приращения толщины зуба к модулю). Тогда толщину зуба по делительной окружности можно записать

Более подробно познакомиться с основными определениями и расчетными зависимостями можно в литературе [ 11.1 ] и в ГОСТ 16530-83.

Толщина зуба колеса по окружности произвольного радиуса .

Толщина зуба по дуге делительной окружности

Угловая толщина зуба по окружности произвольного радиуса из схемы на рис. 12.2

Подставляя в формулу угловой толщины эти зависимости, получим

Методы изготовления эвольвентных зубчатых колес .

Существует множество вариантов изготовления зубчатых колес. В их основу положены два принципиально отличных метода:

метод копирования, при котором рабочие кромки инструмента по форме соответствуют обрабатываемой поверхности ( конгруентны ей, т. е. заполняют эту поверхность как отливка заполняет форму );

метод огибания, при котором инструмент и заготовка за счет кинематической цепи станка выполняют два движения - резания и огибания (под огибанием понимается такое относительное движение заготовки и инструмента , которое соответствует станочному зацеплению , т. е. зацеплению инструмента и заготовки с требуемым законом изменения передаточного отношения).

Из вариантов изготовления по способу копирования можно отметить:

Нарезание зубчатого колеса профилированной дисковой или пальцевой фрезой (проекция режущих кромок которой соответствует конфигурации впадин). При этом методе резание производится в следующем прядке: прорезается впадина первого зуба, затем заготовка с помощью делительного устройства (делительной головки) поворачивается на угловой шаг и прорезается следующая впадина. Операции повторяются пока не будут прорезаны все впадины. Производительность данного способа низкая, точность и качество поверхности невысокие.

Отливка зубчатого колеса в форму. При этом внутренняя поверхность литейной формы конгруентна наружной поверхности зубчатого колеса. Производительность и точность метода высокая, однако при этом нельзя получить высокой прочности и твердости зубьев.

Из вариантов изготовления по способу огибания наибольшее распространение имеют:

Обработка на зубофрезерных или зубодолбежных станках червячными фрезами или долбяками. Производительность достаточно высокая, точность изготовления и чистота поверхностей средняя. Можно обрабатывать колеса из материалов с невысокой твердостью поверхности.

Накатка зубьев с помощью специального профилированного инструмента. Обеспечивает высокую производительность и хорошую чистоту поверхности. Применяется для пластичных материалов, обычно на этапах черновой обработки. Недостаток метода образование наклепанного поверхностного слоя, который после окончания обработки изменяет свои размеры.

Обработка на зубошлифовальных станках дисковыми кругами. Применяемся как окончательная операция после зубонарезания (или накатки зубьев) и термической обработки. Обеспечивает высокую точность и чистоту поверхности. Применяется для материалов с высокой поверхностной прочностью.

Понятие о исходном, исходном производящем и производящем контурах .

Для сокращения номенклатуры режущего инструмента стандарт устанавливает нормативный ряд модулей и определенные соотношения между размерами элементов зуба. Эти соотношения определяются:

для зубчатых колес определяются параметрами исходной рейки через параметры ее нормального сечения - исходный контур;

для зубчатого инструмента определяются параметрами исходной производящей рейки через параметры ее нормального сечения - исходный производящий контур.

По ГОСТ 13755-81 значения параметров исходного контура должны быть следующими:

угол главного профиля a = 20 ° ;

коэффициент высоты зуба h * a = 1 ;

коэффициент высоты ножки h * f = 1.25 ;

коэффициент граничной высоты h * l = 2 ;

коэффициент радиуса кривизны переходной кривой r * f =с * /(1-sin a )= 0.38 ;

коэффициент радиального зазора в паре исходных контуров с * = 0.25.

Исходный производящий контур отличается от исходного высотой зуба h 0 = 2.5m.

Исходный и исходный производящий контуры образуют между собой конруентную пару (рис. 12.3), т.е. один заполняет другой как отливка заполняет заготовку (с радиальным зазором с * Ч m в зоне прямой вершин зуба исходной рейки). Принципиальное отличие этих контуров в том, что исходный контур положен в основу стандартизации зубчатых колес, а исходный производящий - в основу стандартизации зуборезного инструмента. Оба эти контура необходимо отличать от производящего контура - проекции режущих кромок инструмента на плоскость перпендикулярную оси заготовки.

Станочное зацепление .

Станочным зацеплением называется зацепление, образованное заготовкой колеса и инструментом, при изготовлении зубчатого колеса на зубообрабатывающем оборудовании по способу обката. Схема станочного зацепления колеса и инструмента с производящим контуром, совпадающим с исходным производящим контуром, изображена на рис. 12.4.

Линия станочного зацепления - геометрическое место точек контакта эвольвентной части профиля инструмента и эвольвентной части профиля зуба в неподвижной системе координат.

Смещение исходного производящего контура x*m - кратчайшее расстояние между делительной окружностью заготовки и делительной прямой исходного производящего контура.

Уравнительное смещение D y*m - условная расчетная величина, введенная в расчет геометрии зацепления с целью обеспечения стандартного радиального зазора в зацеплении (величина, выражающая в долях модуля уменьшение радиуса окружностей вершин колес, необходимое для обеспечения стандартной величины радиального зазора).

Окружность граничных точек r l - окружность проходящая через точки сопряжения эвольвентной части профиля зуба с переходной кривой.

Основные размеры зубчатого колеса .

Определим основные размеры эвольвентного зубчатого колеса, используя схему станочного зацепления (рис. 12.4).

Радиус окружности вершин

Радиус окружности впадин

Толщина зуба по делительной окружности.

Так как стночно-начальная прямая перекатывается в процессе огибания по делительной окружности без скольжения, то дуга s-s по делительной окружности колеса равна ширине впадины e-e по станочно-начальной прямой инструмента. Тогда, c учетом схемы на рис. 12.5, можно записать

Виды зубчатых колес (Классификация по величине смещения) .

В зависимости от расположения исходного производящего контура относительно заготовки зубчатого колеса, зубчатые колеса делятся на нулевые или без смещения, положительные или с положительным смещением, отрицательные или с отрицательным смещением.

Подрезание и заострение зубчатого колеса .

Если при нарезании зубчатого колеса увеличивать смещение, то основная и делительная окружность не изменяют своего размера, а окружности вершин и впадин увеличиваются. При этом участок эвольвенты, который используется для профиля зуба, увеличивает свой радиус кривизны и профильный угол. Толщина зуба по делительной окружности увеличивается , а по окружности вершин уменьшается.

На рис. 12.7 изображены два эвольвентных зуба для которых

Для термобработанных зубчатых колес с высокой поверхностной прочностью зуба заострение вершины зуба является нежелательным. Термообработка зубьев (азотирова-ние, цементация, цианирование), обеспечивающая высо Рис. 12.7 кую поверхностную прочность и твердость зубьев при сохранении вязкой серцевины, осуществляется за счет насыщения поверхностных слоев углеродом. Вершины зубьев, как выступающие элементы колеса, насыщаются углеродом больше. Поэтому после закалки они становятся более твердыми и хрупкими. У заостренных зубьев появляется склонность к скалыванию зубьев на вершинах. Поэтому рекомендуется при изготовлении не допускать толщин зубьев меньших некоторых допустимых значений. То есть заостренным считается зуб у которого

При этом удобнее пользоваться относительными величинами [s a /m ]. Обычно принимают следующие допустимые значения

улучшение, нормализация [s a /m ] = 0.2;

цианирование, азотирование [s a /m ] = 0.25. 0.3;

цементация [s a /m ] = 0.35. 0.4.

Подрезание эвольвентных зубьев в станочном зацеплении

В процессе формирования эвольвентного зуба по способу огибания, в зависимости от взаимного расположения инструмента и заготовки возможно срезание эвольвентной части профиля зуба той частью профиля инструмента, которая формирует переходную кривую. Условие при котором это возможно определяется из схемы станочного зацепления. Участок линии зацепления, соответствующий эвольвентному зацеплению определяется отрезком B 1 . где точка B l определяется пересечением линии станочного зацепления и прямой граничных точек инструмента. Если точка B l располагается ниже (см. рис.12.8) точки N , то возникает подрезание зуба. Условие при котором нет подрезания можно записать так

Из схемы нарезания эвольвентного колеса инструментом реечного типа мы определили толщину зуба эвольвентного колеса по дуге делительной окружности.


и ширину впадины эвольвентного колеса по дуге делительной окружности


При этом необходимо учесть, что величина относительно смещения
- величина алгебраическая. При положительном смещении (рейка отодвигается от центра заготовки, зуб утолщается) x имеет положительный знак, и при отрицательном смещении (рейка придвигается к центру заготовки, зуб становится тоньше) x имеет отрицательный знак.

Для определения толщины зуба по дуге любой окружности изобразим зуб эвольвентного колеса по оси симметрии. Для этого проведем ось и с центром в точке O проведем основную окружность радиуса rb, делительную окружность радиуса r и окружность вершин радиуса ra (рис.3). Симметрично осевой линии построим профили боковых поверхностей зуба колеса (эвольвенты). Исходя из свойств эвольвентного зацепления угол давления на делительной окружности равен углу зацепления и равен профильному углу рейки a. Центральный угол между радиусом-лучом, проведенным в точку касания нормали к эвольвенте с основной окружностью N и радиусом-лучом, проведенным в точку пересечения нормали с делительной окружностью А равен углу зацепления a. А центральный угол между радиусом-лучом в предыдущую точку А и радиусом-лучом в начало эвольвенты на основной окружности А0 является углом inva. Если мы проведем произвольную окружность радиуса ry и в точку пересечения окружности с эвольвентой зуба Ay проведем радиус-луч, получим соответственно углы ay и invay. Обозначим половину угловой толщины зуба по делительной окружности Y(пси), по основной окружности - Yb и по окружности радиуса ry-Yy.


Рисунок 3 – Определение толщины зуба по дуге любой окружности

Как видно из построения, половина угловой толщины зуба по основной окружности


,

а половина угловой толщины зуба по окружности радиуса ry соответственно равна


Определим, чему равна половина угловой толщины зуба по делительной окружности.

Длина дуги, охватываемая толщиной зуба по делительной окружности нам известна


Если мы возьмем половину угловой толщины зуба по делительной окружности Y в радианах и умножим на радиус делительной окружности r, получим половину толщины зуба, измеренную по дуге делительной окружности. Таким образом мы можем записать


или

Радиус делительной окружности нам известен из условия нарезания зубьев колеса эвольвентной рейкой


Подставим значения r и S в предыдущую формулу


Откуда и определяем половину угловой толщины зуба по делительной окружности


Определяем толщину зуба по дуге основной окружности


Аналогично определяем толщину зуба по дуге любой окружности



Таким образом, для определения толщины зуба по дуге любой окружности необходимо задаваться радиусом ry и определять толщину зуба Sy.

Рассмотрим, что в этой формуле нам известно, и что необходимо еще определить.

Радиусом ry задаемся. Коэффициент относительного смещения x тоже задан. Угол зацепления (угол давления) a на делительной окружности равен профильному углу реки и inva находится по таблицам.

Остается определить величину invay. Угол invay определяется по таблицам, если известен угол ay по дуге любой окружности радиуса ry.

Исходя из свойств эвольвенты центральный угол между радиусом-лучом, проведенным из центра вращения эвольвенты в любую точку эвольвенты Ay, и радиусом-лучом, проведенным в точку касания нормали к эвольвенте с основной окружностью, равен углу давления.

Из прямоугольного треугольника AyNyO определяем


Отсюда определяем угол ay и по таблицам определяем угол invay.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Эвольвентным зубчатым колесом называют звено зубчатого механизма, снабженное замкнутой системой зубьев. При проектировании зубчатого колеса вначале нужно определить его число зубьев z , а затем определить параметры зубьев. Для этого нужно произвольную окружность колеса ry разделить на z частей, каждая из которых называется окружным шагом py .

где my= py / p = dy / z - модуль зацепления по окружности произвольного радиуса.

Модулем зацепления называется линейная величина в π раз меньшая окружного шага или отношение шага по любой концентрической окружности зубчатого колеса к π . В зависимости от окружности по которой определен модуль различают делительный, основной, начальный. Для косозубых колес еще и нормальный, торцевой и осевой модули. В ряде стран используется величина обратная модулю, которая называется питчем. Питч (диаметральный) - число зубьев колеса, приходящееся на дюйм диаметра. Исходя из этого модуль можно определить как число милиметров диаметра, приходящееся на один зуб. На колесе можно провести бесчисленное число окружностей на каждой из которых будет свой модуль. Для ограничения этого числа ГОСТом введен стандартный ряд модулей. Стандартной модуль определяется по окружности называемой делительной. Точнее делительной называется такая окружность зубчатого колеса, на которой модуль и шаг принимают стандартное значение. Окружным шагом или шагом называется расстояние по дуге окружности между одноименными точками профилей соседних зубьев (под одноименными понимаются правые или левые профили зуба). Угловой шаг t - центральный угол соответствующий дуге p - окружному шагу по делительной окружности.

Примечание: Согласно ГОСТ основные элементы зубчатого колеса обозначаются по следующим правилам: линейные величины - строчными буквами латинского алфавита, угловые - греческими буками; установлены индексы для величин :

  • по окружностям: делительной - без индекса, вершин - a , впадин - f , основная - b , начальная - w , нижних точек активных профилей колес - p , граничных точек - l ;
  • по сечениям: нормальное сечение - n , торцевое сечение - t , осевое сечение - x ;
  • относящихся к зуборезному инструменту - 0 .

Для параметров зубчатого колеса справедливы следующие соотношения

- диаметр окружности произвольного радиуса,

- диаметр делительной окружности,

- шаг по окружности произвольного радиуса,

- шаг по делительной окружности,

где α - угол профиля на делительной окружности,

α y - угол профиля на окружности произвольного радиуса.

Углом профиля называется острый угол между касательной к профилю в данной точки и радиусом - вектором, проведенным в данную точку из центра колеса.

Шаг колеса делится на толщину зуба sy и ширину впадины ey . Толщина зуба sy - расстояние по дуге окружности ry между разноименными точками профилей зуба. Ширина впадины ey - расстояние по дуге окружности ry между разноименными точками профилей соседних зубьев.

На основной окружности α b => 0 и cos αb => 1, тогда

В зависимости от соотношения между толщиной зуба и шириной впадины на делительной окружности зубчатые колеса делятся на :

нулевые s = e = π * m / 2 , D = 0;

положительные s > e , =>∆ > 0;

отрицательные s e , => ∆

где ∆ - коэффициент изменения толщины зуба (отношение приращения толщины зуба к модулю). Тогда толщину зуба по делительной окружности можно записать

Более подробно познакомиться с основными определениями и расчетными зависимостями можно в литературе и в ГОСТ 16530-83.

Толщина зуба по дуге делительной окружности

Угловая толщина зуба по окружности произвольного радиуса из схемы на рис. 11.2

Подставляя в формулу угловой толщины эти зависимости, получим

Существует множество вариантов изготовления зубчатых колес. В их основу положены два принципиально отличных метода:

  • метод копирования, при котором рабочие кромки инструмента по форме соответствуют обрабатываемой поверхности ( конгруентны ей, т. е. заполняют эту поверхность как отливка заполняет форму );
  • метод огибания , при котором инструмент и заготовка за счет кинематической цепи станка выполняют два движения - резания и огибания (под огибанием понимается такое относительное движение заготовки и инструмента , которое соответствует станочному зацеплению, т. е. зацеплению инструмента и заготовки с требуемым законом изменения передаточного отношения).

Из вариантов изготовления по способу копирования можно отметить:

  • Нарезание зубчатого колеса профилированной дисковой или пальцевой фрезой (проекция режущих кромок которой соответствует конфигурации впадин). При этом методе резание производится в следующем прядке: прорезается впадина первого зуба, затем заготовка с помощью делительного устройства (делительной головки) поворачивается на угловой шаг и прорезается следующая впадина. Операции повторяются пока не будут прорезаны все впадины. Производительность данного способа низкая, точность и качество поверхности невысокие.
  • Отливка зубчатого колеса в форму. При этом внутренняя поверхность литейной формы конгруентна наружной поверхности зубчатого колеса. Производительность и точность метода высокая, однако при этом нельзя получить высокой прочности и твердости зубьев.

Из вариантов изготовления по способу огибания наибольшее распространение имеют:

  • Обработка на зубофрезерных или зубодолбежных станках червячными фрезами или долбяками . Производительность достаточно высокая, точность изготовления и чистота поверхностей средняя. Можно обрабатывать колеса из материалов с невысокой твердостью поверхности.
  • Накатка зубьев с помощью специального профилированного инструмента. Обеспечивает высокую производительность и хорошую чистоту поверхности. Применяется для пластичных материалов, обычно на этапах черновой обработки. Недостаток метода образование наклепанного поверхностного слоя, который после окончания обработки изменяет свои размеры.
  • Обработка на зубошлифовальных станках дисковыми кругами. Применяемся как окончательная операция после зубонарезания (или накатки зубьев) и термической обработки. Обеспечивает высокую точность и чистоту поверхности. Применяется для материалов с высокой поверхностной прочностью.

Для сокращения номенклатуры режущего инструмента стандарт устанавливает нормативный ряд модулей и определенные соотношения между размерами элементов зуба. Эти соотношения определяются:

  • для зубчатых колес определяются параметрами исходной рейки через параметры ее нормального сечения - исходный контур;
  • для зубчатого инструмента определяются параметрами исходной производящей рейки через параметры ее нормального сечения - исходный производящий контур.

По ГОСТ 13755-81 значения параметров исходного контура должны быть следующими:

  • угол главного профиля a= 20° ;
  • коэффициент высоты зуба h * a= 1 ;
  • коэффициент высоты ножки h * f= 1.25 ;
  • коэффициент граничной высоты h * l= 2 ;
  • коэффициент радиуса кривизны переходной кривой r * f =с * /(1-sina ) = 0.38 ;
  • коэффициент радиального зазора в паре исходных контуров с * = 0.25.

Исходный производящий контур отличается от исходного высотой зуба h0 = 2.5m.

Исходный и исходный производящий контуры образуют между собой конруентную пару (рис. 12.3), т.е. один заполняет другой как отливка заполняет заготовку (с радиальным зазором с * m в зоне прямой вершин зуба исходной рейки). Принципиальное отличие этих контуров в том, что исходный контур положен в основу стандартизации зубчатых колес, а исходный производящий - в основу стандартизации зуборезного инструмента. Оба эти контура необходимо отличать от производящего контура - проекции режущих кромок инструмента на плоскость перпендикулярную оси заготовки.

Станочным зацеплением называется зацепление, образованное заготовкой колеса и инструментом, при изготовлении зубчатого колеса на зубообрабатывающем оборудовании по способу обката. Схема станочного зацепления колеса и инструмента с производящим контуром, совпадающим с исходным производящим контуром, изображена на рис. 12.4.

Линия станочного зацепления - геометрическое место точек контакта эвольвентной части профиля инструмента и эвольвентной части профиля зуба в неподвижной системе координат.

Смещение исходного производящего контура x*m - кратчайшее расстояние между делительной окружностью заготовки и делительной прямой исходного производящего контура.

Уравнительное смещение D y*m - условная расчетная величина, введенная в расчет геометрии зацепления с целью обеспечения стандартного радиального зазора в зацеплении (величина, выражающая в долях модуля уменьшение радиуса окружностей вершин колес, необходимое для обеспечения стандартной величины радиального зазора).

Окружность граничных точек rl - окружность проходящая через точки сопряжения эвольвентной части профиля зуба с переходной кривой.

Определим основные размеры эвольвентного зубчатого колеса, используя схему станочного зацепления (рис. 12.4).

  1. Радиус окружности вершин

  1. Радиус окружности впадин

  1. Толщина зуба по делительной окружности.

Так как станочно-начальная прямая перекатывается в процессе огибания по делительной окружности без скольжения, то дуга s-s по делительной окружности колеса равна ширине впадины e-e по станочно-начальной прямой инструмента. Тогда, c учетом схемы на рис. 12.5, можно записать

В зависимости от расположения исходного производящего контура относительно заготовки зубчатого колеса, зубчатые колеса делятся на нулевые или без смещения, положительные или с положительным смещением, отрицательные или с отрицательным смещением.

Если при нарезании зубчатого колеса увеличивать смещение, то основная и делительная окружность не изменяют своего размера, а окружности вершин и впадин увеличиваются. При этом участок эвольвенты, который используется для профиля зуба, увеличивает свой радиус кривизны и профильный угол. Толщина зуба по делительной окружности увеличивается, а по окружности вершин уменьшается.

На рис. 12.7 изображены два эвольвентных зуба для которых

Для термобработанных зубчатых колес с высокой поверхностной прочностью зуба заострение вершины зуба является нежелательным. Термообработка зубьев (азотирование, цементация, цианирование), обеспечивающая высокую поверхностную прочность и твердость зубьев при сохранении вязкой серцевины , осуществляется за счет насыщения поверхностных слоев углеродом. Вершины зубьев, как выступающие элементы колеса, насыщаются углеродом больше. Поэтому после закалки они становятся более твердыми и хрупкими. У заостренных зубьев появляется склонность к скалыванию зубьев на вершинах. Поэтому рекомендуется при изготовлении не допускать толщин зубьев меньших некоторых допустимых значений. То есть заостренным считается зуб у которого

При этом удобнее пользоваться относительными величинами [ sa / m ] . Обычно принимают следующие допустимые значения

улучшение, нормализация [ sa / m ] = 0.2;

цианирование, азотирование [ sa / m ] = 0.25. 0.3;

цементация [ sa / m ] = 0.35. 0.4.

В процессе формирования эвольвентного зуба по способу огибания , в зависимости от взаимного расположения инструмента и заготовки возможно срезание эвольвентной части профиля зуба той частью профиля инструмента, которая формирует переходную кривую. Условие при котором это возможно определяется из схемы станочного зацепления. Участок линии зацепления, соответствующий эвольвентному зацеплению определяется отрезком B1. где точка Bl определяется пересечением линии станочного зацепления и прямой граничных точек инструмента. Если точка Bl располагается ниже (см. рис.12.8) точки N , то возникает подрезание зуба. Условие при котором нет подрезания можно записать так

Из ∆ P 0 N 0

а из ∆ P 0 BlF

Чтобы нарезать зубчатое колесо, надо знать элементы зубчатого зацепления, т. е. число зубьев, шаг зубьев, высоту и толщину зуба, диаметр делительной окружности и наружный диаметр. Эти элементы показаны на рис. 240.


Рассмотрим их последовательно.
В каждом зубчатом колесе различают три окружности и, следовательно, три соответствующих им диаметра:
во-первых, окружность выступов, которая представляет собой наружную окружность заготовки зубчатого колеса; диаметр окружности выступов, или наружный диаметр, обозначается Dе;
во-вторых, делительную окружность, которая представляет собой условную окружность, делящую высоту каждого зуба на две неравные части — верхнюю, называемую головкой зуба, и нижнюю, называемую ножкой зуба; высота головки зуба обозначается h', высота ножки зуба — h"; диаметр делительной окружности обозначается d;
в-третьих, окружность впадин, которая проходит по основанию впадин зуба; диаметр окружности впадин обозначается Di.
Расстояние между одноименными (т. е. обращенными в одну сторону, например двумя правыми или двумя левыми) боковыми поверхностями (профилями) двух смежных зубьев колеса, взятое по дуге делительной окружности, называется шагом и обозначается t. Следовательно, можно записать:


где t — шаг в мм;
d — диаметр делительной окружности;
z — число зубьев.
Модулем m называется длина, приходящаяся по диаметру делительной окружности на один зуб колеса; численно модуль равен отношению диаметра делительной окружности к числу зубьев. Следовательно, можно записать:


Из формулы (10) следует, что шаг

t = πm = 3,14m мм. (9б)

Чтобы узнать шаг зубчатого колеса, надо его модуль умножить на π.
В практике нарезания зубчатых колес наиболее важным является модуль, так как все элементы зуба связаны с велининой модуля.
Высота головки зуба h' равна модулю m, т. е.

h' = m. (11)

Высота ножки зуба h" равна 1,2 модуля, или

h" = 1,2m. (12)

Высота зуба, или глубина впадины,

h = h' + h" = m + 1,2m = 2,2m. (13)

По числу зубьев z зубчатого колеса можно определить диаметр его делительной окружности.

d = z · m. (14)

Наружный диаметр зубчатого колеса равен диаметру делительной окружности плюс высота двух головок зуба, т. е.

De = d + 2h' = zm + 2m = (z + 2)m. (15)

Следовательно, для определения диаметра заготовки зубчатого колеса надо число его зубьев увеличить на два и полученное число умножить на модуль.
В табл. 16 даны основные зависимости между элементами зубчатого зацепления для цилиндрического колеса.


Пример 13. Определить все размеры, необходимые для изготовления зубчатого колеса, имеющего z = 35 зубьев и m = 3.
Определяем по формуле (15) наружный диаметр, или диаметр заготовки:

De = (z + 2)m = (35 + 2) · 3 = 37 · 3 = 111 мм.

Определяем по формуле (13) высоту зуба, или глубину впадины:

h = 2,2m = 2,2 · 3 = 6,6 мм.

Определяем по формуле (11) высоту головки зуба:

h' = m = 3 мм.

Зуборезные фрезы

Для фрезерования зубчатых колес на горизонтально-фрезерных станках применяют фасонные дисковые фрезы с профилем, соответствующим впадине между зубьями колеса. Такие фрезы называют зуборезными дисковыми (модульными) фрезами (рис. 241).


Зуборезные дисковые фрезы подбирают в зависимости от модуля и числа зубьев фрезеруемого колеса, так как форма впадины двух колес одного и того же модуля, но с разным числом зубьев неодинакова. Поэтому при нарезании зубчатых колес для каждого числа зубьев и каждого модуля следовало бы иметь свою зуборезную фрезу. В условиях производства с достаточной степенью точности можно пользоваться несколькими фрезами для каждого модуля. Для нарезания более точных зубчатых колес необходимо иметь набор из 15 зуборезных дисковых фрез, для менее точных достаточен набор из 8 зуборезных дисковых фрез (табл 17).

15-штучный набор зуборезных дисковых фрез

Номер фрезы1234
Число зубьев на-
резаемого ко-
леса
12131415-1617-1819-2021-22
Номер фрезы5678
Число зубьев на-
резаемого ко-
леса
23-2526-2930-3435-4142-5455-7980-134135
рейка

8-штучный набор зуборезных дисковых фрез

Номер фрезы12345678
Число зубьев на-
резаемого ко-
леса
12-1314-1617-2021-2526-3435-5455-134135
рейка

В целях сокращения количества размеров зуборезных фрез в Советском Союзе модули зубчатых колес стандартизованы, т. е. ограничены следующими модулями: 0,3; 0,4; 0,5; 0,6; 0,75; 0,8; 1,0; 1,25; 1,5; 1,75; 2,0; 2,25; 2,50; 3,0; 3,5; 4,0; 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 8,0; 9,0; 10,0; 11; 12; 13; 14; 15; 16; 18; 20; 22; 24; 26; 28; 30; 33; 36; 39; 42; 45; 50.
На каждой зуборезной дисковой фрезе выбиты все характеризующие ее данные, позволяющие правильно произвести выбор необходимой фрезы.
Зуборезные фрезы изготовляют с затылованными зубьями. Это — дорогой инструмент, поэтому при работе с ним необходимо строго соблюдать режимы резания.

Измерение элементов зуба

Измерение толщины и высоты головки зуба производится зубомером или штангензубомером (рис. 242); устройство его измерительных губок и метод отсчета по нониусу подобны прецизионному штангенциркулю с точностью 0,02 мм.


Величина А, на которую следует установить ножку 2 зубомера, будет:

А = h' · а = m · а мм, (16)

где m — модуль измеряемого колеса.
Коэффициент а всегда больше единицы, так как высота головки зуба h' измеряется по дуге начальной окружности, а величина А измеряется по хорде начальной окружности.
Величина В, на которую следует установить губки 1 и 3 зубомера, будет:

В = m · b мм, (17)

где m — модуль измеряемого колеса.
Коэффициент b учитывает, что размер В — это размер хорды по начальной окружности, в то время как ширина зуба равна длине дуги начальной окружности.
Значения а и b даны в табл. 18.
Так как точность отсчета штангензубомера составляет 0,02 мм, то у полученных по формулам (16) и (17) величин отбрасываем третий десятичный знак и округляем до четных значений.

Значения a и b для установки штангензубомера

Число зубьев
измеряемого
колеса
Значения коэффициентовЧисло зубьев
измеряемого
колеса
Значения коэффициентов
abab
121,05131,5663271,02281,5698
131,04731,5669281,02211,5699
141,04411,5674291,02121,5700
151,04111,5679301,02061,5700
161,03851,568231-321,01921,5701
171,03631,568533-341,01821,5702
181,03421,5688351,01761,5702
191,03241,5690361,01711,5703
201,03081,569237-381,01621,5703
211,02931,569339-401,01541,5704
221,02811,569441-421,01461,5704
231,02681,569543-441,01411,5704
241,02571,5696451,01371,5704
251,02461,5697461,01341,5705
261,02371,569747-481,01281,5706
49-501,0231,570771-801,00771,5708
51-551,01121,570781-1271,00631,5708
56-601,01031,5708128-1351,00461,5708
61-701,00881,5708Рейка1,00001,5708

Пример 14. Установить зубомер для проверки размеров зуба колеса с модулем 5 и числом зубьев 20.
По формулам (16) и (17) и табл. 18 имеем:
А = m · а = 5 · 1,0308 = 5,154 или, округленно, 5,16 мм;
В = m · b = 5 · 1,5692 = 7,846 или, округленно, 7,84 мм.

Читайте также: