Значение индукции в процессах развития зубов

Добавил пользователь Алексей Ф.

date image
2014-02-24 views image
4808

facebook icon
vkontakte icon
twitter icon
odnoklasniki icon



Процессы, влияющие на развитие организма

Выяснение механизмов развития – одна из сложных проблем биологической науки.

Эмбриогенез в целом определяется наследственным аппаратом клеток (как уже говорилось, в ходе онтогенеза реализуется наследственная информация)

Зародыш развивается как единый организм, в котором все клетки, ткани и органы находятся в тесном взаимодействии.

Эти взаимодействия и являются движущими силами эмбриогенеза.

Основными биологическими процессами, влияющими на развитие организма являются: пролиферация, перемещение клеток, избирательная сортировка клеток, дифференцировка клеток, гибель клеток зародыша (апоптоз), эмбриональная индукция.

Пролиферация - (размножение клеток) лежит в основе развития всех тканей и органов. Благодаря пролиферации достигается увеличение числа клеток, нарастание массы тканей, которые являются основным механизмом роста.

Перемещение клеток (миграция) наблюдается, например, в процессе гаструляции, гисто – и органогенеза и происходит за счет амёбовидного движения.

Избирательная сортировкаклеток состоит в выделении из массы тех клеток, которые, объединившись, в последующем дадут определенный орган.

Важную роль играет дифференцировка клеток, которая приводит к появлению однородных специализированных клеток, способных выполнять определенные функции.

В основе процессов клеточной дифференцировки лежит дифференциальная (неодинаковая) активность генов. Главный механизм клеточной дифференцировки – это избирательное блокирование одних генов и деблокирование других генов

В эмбриональном развитии наблюдается закономерная гибель (апоптоз - регулирует численность клеток, уничтожает поврежденные клетки) некоторых клеток. Благодаря гибели клеток, некоторые зачатки органов приобретают окончательную форму. Например, гибель клеток служит причиной разъединения фаланг пальцев у млекопитающих.

Эмбриональная индукция (процесс влияния одних частей зародыша на развитие других) – это взаимодействие между частями развивающего организма, при этом одна часть зародыша (индуктор) воздействует на другую (реагирующая часть), в результате воздействия образуется орган. Индуктор – это часть зародыша, которая направляет развитие других частей зародыша.

Явление индукции открыл в 1921г. Ганс Шпеман, немецкий эмбриолог. В результате экспериментальных работ был сделан вывод о том, что развитие зародыша происходит в строгой зависимости одних органов от других.

Расположение хорды, мезодермы относительно нервной пластинки на спинной стороне зародыша – не случайность, а результат индукционных связей между ними.

Г.Шпеман осуществил пересадку участка губы бластопора со спинной стороны зародыша на брюшную, где в норме никогда не происходит образования нервной трубки (опыт проводился на тритонах).

После операции на брюшной стороне зародыша возникла нервная трубка, а затем хорда, сомиты и сформировался дополнительный зародыш.

Этот опыт доказывает, что существуют первичные индукторы (или, как назвал их Г.Шпеман, организаторы), которые намечают развитие других частей. Однако индукторы действуют только тогда, когда клетки способны к восприятию, т.е. обладают компетенцией.

Таким образом, весь эмбриогенез представляет собой как бы цепь следующих друг за другом индукционных процессов, шаг за шагом определяющих формообразование, дифференцировку органов и их систем, и становление внешнего облика развивающейся особи.

Эмбриональная индукция — это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка. Явление эмбриональной индукции с начала XX в. изучает экспериментальная эмбриология.

Классическими считают опыты немецкого ученого Г. Шпемана и его сотрудников (1924) на зародышах амфибий. Для того чтобы иметь возможность проследить за судьбой клеток определенного участка зародыша, Шпеман использовал два вида тритонов: тритона гребенчатого, яйца которого лишены пигмента и потому имеют белый цвет, и тритона полосатого, яйца которого благодаря пигменту имеют желто-серый цвет.

Один из опытов заключается в следующем: кусочек зародыша из области дорсальной губы бластопора на стадии гаструлы тритона гребенчатого пересаживают на боковую или вентральную сторону гаструлы тритона полосатого (рис. 8.8). В месте пересадки происходит развитие нервной трубки, хорды и других органов. Развитие может достичь довольно продвинутых стадий с образованием дополнительного зародыша на боковой или вентральной стороне зародыша реципиента. Дополнительный зародыш содержит в основном клетки зародыша реципиента, но светлые клетки зародыша-донора тоже обнаруживаются в составе различных органов.


Рис. 8.8. Пересадка спинной губы от зародыша-донора на брюшную сторону зародыша-реципиента. А—схема опыта; Б—поперечный срез на стадии закладки двух комплексов осевых органов:

1—первичный зародыш, 2—вторичный, индуцированный зародыш

Из этого и подобных опытов следует несколько выводов. Во-первых, участок, взятый из спинной губы бластопора, способен направлять или даже переключать развитие того материала, который находится вокруг него, на определенный путь развития. Он как бы организует, или индуцирует, развитие зародыша как в обычном, так и в нетипичном месте. Во-вторых, боковая и брюшная стороны гаструлы обладают более широкими потенциями к развитию, нежели их презумптивное (предполагаемое) проспективное направление, так как вместо обычной поверхности тела в условиях эксперимента там образуется целый зародыш. В-третьих, достаточно точное строение новообразованных органов в месте пересадки указывает на эмбриональную регуляцию. Это означает, что фактор целостности организма приводит к достижению хорошего конечного результата из нетипичных клеток в нетипичном месте, как бы управляя процессом, регулируя его в целях достижения этого результата.

Г. Шпеман назвал спинную губу бластопора первичным эмбриональным организатором. Первичным потому, что на более ранних стадиях развития подобных влияний обнаружить не удавалось, а организатором потому, что влияние происходило именно на морфогенез. В настоящее время установлено, что главная роль в спинной губе бластопора принадлежит хордомезодермальному зачатку, который назвали первичным эмбриональным индуктором, а само явление, при котором один участок зародыша влияет на судьбы другого,— эмбриональной индукцией.

В 30-е гг. исследователи пытались установить природу индуцирующего действия. Вскоре выяснилось, что разнообразные убитые ткани, вытяжки из самых различных тканей беспозвоночных и позвоночных животных, а также растений, несколько классов химических соединений (белки, нуклеопротеины, стероиды и даже неорганические вещества) могут вызывать индукцию. Таким образом была установлена химическая природа организаторов. Одновременно стало ясно, что специфичность ответа прямо не связана с. химическими свойствами индуктора.

Внимание эмбриологов переключилось на индуцируемые ткани. Оказалось, что специфичность действия индуктора-раздражителя может быть весьмаразличной, а сам эффект индуцирующего воздействия ограничивается способностью того или иного участка развивающегося зародыша воспринимать это воздействие и отвечать на него.

Некоторые индукторы, по-видимому, более или менее специфичны в определении судьбы индуцируемой ткани. Об этом свидетельствуют следующие опыты. Если пересадить спинную губу ранней гаструлы, то индуцируется развитие структур переднего мозга (головной индуктор), если же пересадить спинную губу поздней гаструлы, то развиваются спинной мозг и мезодермальные ткани (туловищный индуктор, рис. 8.9). Было показано также, что наиболее сильное нейрализующее влияние оказывает фракция нуклеопротеинов, а мезодермализующим индуктором оказался белок. Если имплантировать оба эти индуктора в виде смеси клеток или смеси веществ, то получаются хорошо развитые зародыши.


Рис. 8.9. Результаты пересадки головного (А) и туловищного (Б) индукторов

Другие индукторы действуют как неспецифические пусковые механизмы, как бы высвобождая ответ, уже детерминированный в клетках индуцируемой ткани. Было показано, что, например, слуховой пузырек выступает не только в роли индуктора слухового аппарата, но и является активатором различных морфогенетических процессов. Будучи пересажен в область боковой линии эмбриона тритона, он влечет за собой индукцию конечности. Конечность можно индуцировать также пересадкой носовой плакоды или гипофиза. Легче всего добавочные конечности индуцируются в области боковой линии, но они могут быть получены и на брюшной стороне. Эти примеры указывают на то, что специфический ответ зависит не столько от индуктора, сколько отреагирующей области.

Способность эмбрионального материала реагировать на различного рода влияния изменением своей презумптивной судьбы получила название компетенции.Установлено, например, что компетенция к образованию нервной системы у амфибий затрагивает всю эмбриональную эктодерму и возникает с момента начала гаструляции. К концу гаструляции эта компетенция прекращается. Таким образом, изменение хода развития возможно лишь в том случае, если область компетенции к образованию некоторой закладки шире, чем область, из которой она в норме развивается, а также если индукционное действие происходит в определенный интервал онтогенетического развития.

Изучение индукционных взаимодействий у разных представителей типа хордовых показало, что области и сроки компетенции неодинаковы. Так, у асцидий на стадии 8 бластомеров, когда уже все основные зачатки предопределены, проводили некоторые перемещения бластомеров. Материал хордомезодермы и основная часть нейрального материала у них локализованы в заднем вегетативном бластомере. Небольшая часть нейрального материала, формирующего головной ганглий, находится в заднем анимальном бластомере, расположенном над задним вегетативным (рис. 8.10).

Для проверки индукционных взаимодействий между ними анимальный ярус бластомеров поворачивали на 180° так, чтобы задний анимальный бластомер терял контакт с задним вегетативным. Головной ганглий не развился нигде. Это означает, что для развития головного ганглия необходимо индукционное влияние на задний анимальный бластомер со стороны заднего вегетативного. Кроме того, очевидно, что задний анимальный бластомер не обладает автономностью развития, но только он компетентен к восприятию воздействия со стороны заднего вегетативного бластомера, содержащего хордомезодермальный зачаток.


Рис. 8.10. Карта презумптивных зачатков у зародыша асцидий

на стадии восьми бластомеров:

1—эпидермис, 2—нервная пластинка, 3—хорда, 4—энтодерма, 5—сомиты, 6—мезенхима

Во всех других классах хордовых индукционные взаимодействия между хордомезодермальным и нейральным зачатками подобны таковым у амфибий. Полагают, что в ходе эволюции хордовых произошли расширение областей и удлинение срока компетенции. Это расценивают как признак существенного эволюционного прогресса.

Явления индукции многочисленны и разнообразны. Помимо первичной индукции со стороны спинной губы бластопора описаны индукционные влияния на более поздних, нежели гаструляция, этапах развития. Все они являются вторичными и третичными, представляя собой каскадные взаимодействия, типичные для дифференцировки, потому что индукция многих структур зависит от предшествующих индукционных событий. Примером вторичной индукции может служить действие глазного бокала (выпячивание переднего мозга) на прилежащий покровный эпителий, под влиянием чего эпителий впячивается, а затем отшнуровывается хрусталиковый пузырек—зачаток глазного хрусталика (рис. 8.11). Расположенный над хрусталиком покровный эпителий тоже испытывает сложные изменения, теряет пигмент и становится роговичным эпителием. Это пример третичной индукции. Таким образом получается, что глазной бокал возникает только после развития передней части головного мозга, хрусталик — после формирования бокала, а роговица — после образования хрусталика.

Вместе с тем индукция носит не только каскадный, но и переплетающийся характер, т.е. в индукции той или иной структуры может участвовать не одна, а несколько тканей. В свою очередь, такая структура может служить индуктором для нескольких других тканей. Например, глазной бокал служит главным, но не единственным индуктором хрусталика. Морфогенез всегда сопровождается значительными перемещениями тканей друг относительно друга. Так, презумптивный хрусталик, т.е. эпидермис, из которого в последующем должен развиться хрусталик, во время гаструляции лежит над энтодермой будущей глотки, которая служит первым индуктором хрусталика. Затем под этим эпидермисом оказывается сердечная мезодерма, которая тоже действует как индуктор. И только позднее, во время нейруляции на переднем конце нервной трубки выпячиваются глазные пузыри, образующие глазной бокал и сетчатку, являющуюся главным индуктором хрусталика (рис. 8.12).


Рис. 8.11. Развитие (А —Г) глаза у хвостатой амфибии:

1—хрусталиковая плакода, 2—пигментный эпителий, 3—сетчатка, 4—роговица, 5—хрусталиковые волокна, 6—хрусталиковый эпителий, 7—глазной бокал


Рис. 8.12. Последовательные индукционные взаимодействия,

необходимые для образования хрусталика у зародыша амфибии:

I—ранний зародыш, II—гаструла, III—нейрула, IV—стадия хвостовой почки, V—личинка, VI—взрослая особь; 1—плакода, 2—пузырек, 3—волокна, а—энтодерма, б—сердечная мезодерма, в—сетчатка

Удаляя ту или иную из индуцирующих тканей, определили степень участия каждой из них в индукции хрусталика. Оказалось, что при удалении сетчатки глазного бокала у 42% зародышей амфибий все же формировались хрусталики и, следовательно, энтодерма и мезодерма в сумме обладают почти таким же индуцирующим действием, как и сетчатка глазного бокала. Полагают, что многочисленность индуцирующих тканей может иметь решающее значение для точного установления места формирования органа. Кроме того, сети индукции могут играть важную роль в канализации развития, обеспечивая нормальное течение органогенеза, даже если один из компонентов ин-


Рис. 8.13. Влияние удаления апикального эктодермального гребня

на развитие почки крыла.

А—схема расположения почки крыла; Б—почка крыла; В—недоразвитие скелета (пунктир) после удаления апикального гребня:

1—почка крыла, 2 —апикальный эктодермальный гребень, 3—мезенхима, 4 —плечевая кость, 5—локтевая и лучевая кости

Чаще всего близлежащие участки зародыша оказывают взаимное влияние друг на друга. Демонстративным примером являются взаимодействия в зачатке конечности. Конечность развивается из скопления клеток, происходящих из боковой мезодермы, и покрывающих их клеток эктодермы (рис. 8.13). Развитие конечности начинается с активации клеток боковой мезодермы в непосредственной близости от сомитов, которые, возможно, и оказывают индуцирующие импульсы на мезодерму в области будущей конечности. Активированные мезодермальные клетки зачатка конечности влияют на покрывающую их эктодерму, в результате чего она утолщается. Образовавшееся утолщение эпидермиса на его верхушке называют апикальным эктодермальным гребнем. Последний стимулирует рост почки конечности (при удалении его рост почки конечности прекращается). Мезодерма же поддерживает гребень в активном состоянии и определяет форму конечности. Например, мезодерма из почки крыла при соединении с эктодермой почки ноги образует крыло, покрытое перьями, или мезодерма из почки конечности утиного зародыша с эктодермой куриного приводит к развитию перепончатой конечности.

Различают гетерономную и гомономную виды индукции. К гетерономной относят случаи, подобные описанному, при которых один кусочек зародыша индуцирует иной орган (хордомезодерма индуцирует появление нервной трубки и всего зародыша в целом). Гомономная индукция заключается в том, что индуктор побуждает окружающий материал к развитию в том же направлении, что и он сам. Например, область нефротома, пересаженная другому зародышу, способствует развитию окружающего материала в сторону формирования головной почки, а прибавление в культуру фибробластов сердца маленького кусочка хряща влечет за собой процесс образования хряща.

Чтобы воспринять действие индуктора, компетентная ткань должна обладать хотя бы минимальной организацией. Одиночные клетки не воспринимают действие индуктора, а чем больше клеток в реагирующей ткани, тем активнее ее реакция. Для оказания индуцирующего действия иногда достаточно лишь одной клетки индуктора.

Индукционные взаимодействия могут проявляться в культуре ткани in vitro, но по-настоящему полноценными они бывают только в структуре целостного организма.

Весьма интересны результаты опытов, помогающие оценить взаимосвязь индукционных взаимодействий с цитодифференцировкой и морфогенезом. Ранее уже было описано определяющее влияние мезенхимы на морфогенез конечностей позвоночных.

Многочисленными опытами показано также большое влияние мезенхимы на морфогенез желез эпителиального происхождения. Легочная энтодерма, например, при выращивании с печеночной мезенхимой приобретает строение печеночных балок, а эпителий молочной железы под влиянием мезенхимного зачатка слюнной железы приобретает морфологию слюнной железы. Это происходит как при выращивании in vitro, так и при трансплантации в организм животного-реципиента. Подобные результаты с несомненностью указывают на необходимость индуцирующего влияния мезенхимы на морфогенез.

Однако не менее интересен факт, что морфогенез не всегда сопряжен с определенным направлением дифференцирован эпителия. Так, рекомбинантная слюнная железа, полученная из зачатка молочной железы и мезенхимы слюнной, при подсадке лактирующей самке-реципиенту начинает вырабатывать молоко несмотря на то, что имеет морфологию по типу слюнной железы. Это свидетельствует о возможности разобщения, об автономности процессов морфогенеза и цитодифференцировки и может быть объяснено более ранней детерминацией цитодифференцировки другими, более ранними актами индукции. Подобные наблюдения позволяют по-другому взглянуть на возможности преобразований морфогенезов в процессе эволюции.

Таким образом, явления индукции обнаружены на самых разных этапах развития многих позвоночных. В акте индукции следует различать два компонента: индуктор и реагирующую область. Изложенные выше положения кратко обобщены на схеме 8.4.

В настоящее время интенсивно ведутся работы по изучению молекулярных и клеточных механизмов индукции. В теоретическом смысле явление эмбриональной индукции помогает по-новому оценить взаимоотношение таких процессов, как зависимая дифференцировка и детерминация, а также цитодифференцировка и морфогенез.

От момента образования зиготы и до выхода зародыша из яйцевых оболочек длится эмбриональный период развития.

Эмбриональный период

Дробление зиготы

После того, как произошло оплодотворение - слияние сперматозоида и яйцеклетки, образовавшаяся зигота начинает интенсивно делиться. Ее множественные митотические деления называют дроблением.

Важная особенность дробления в том, что не происходит увеличение в размере зародыша: клетки дробятся (делятся) настолько быстро, что не успевают накопить цитоплазматическую массу. Дробление зиготы человека является полным неравномерным асинхронным.

Дробление зиготы

В результате дробления образуется морула. Морула (лат. morum - ягода тутового дерева) - клетка на стадии этапа дробления, когда зародыш представляет собой компактную совокупность клеток (без полости внутри).

Бластуляция

Бластуляция - заключительный период дробления, в который зародыш называется бластулой.

После очередных этапов многократного деления образуется однослойный зародыш с полостью внутри - бластула (греч. blastos — зачаток).

Стенки бластулы состоят из бластомеров, которые окружают центральную полость - бластоцель (греч. koilos — полый). Соединяясь друг с другом, бластомеры образуют бластодерму из одного слоя клеток.

Бластула и морула

Гаструляция (греч. gaster — желудок, чрево)

Гаструляцией называют стадию эмбрионального развития, в ходе которой клетки, возникшие в результате дробления зиготы, формируют три зародышевых листка: эктодерму, мезодерму и энтодерму.

Стенка бластулы начинается впячиваться внутрь - происходит инвагинация стенки. По итогу такого впячивания зародыш становится двухслойным. Двухслойный зародыш называется - гаструла. Полость гаструлы называется гастроцель (полость первичной кишки), а отверстие, соединяющее гастроцель и внешнюю среду - первичный рот (бластопор).

Гаструла

У первичноротых животных на месте первичного рта (бластопора) образуется ротовое отверстие. К первичноротым относятся: кишечнополостные, плоские, круглые и кольчатые черви, моллюски, членистоногие.

У вторичноротых на месте бластопора формируется анальное отверстие, а ротовое отверстие образуется на противоположном полюсе. К вторичноротым относят хордовых и иглокожих (морских звезд, морских ежей).

Первичноротые и вторичноротые

При впячивании части бластулы (инвагинации) клетки бластодермы мигрируют внутрь и становятся энтодермой (греч. entós — внутренний). Оставшаяся часть бластодермы снаружи называется эктодермой (греч. ἔκτος - наружный).

Между энто- и эктодермой из группы клеток формируется третий зародышевый листок - мезодерма (греч. μέσος — средний).

Гаструляция

Нейрула

Эта стадия следует за гаструлой. Ранняя нейрула представляет собой трехслойный зародыш, состоящий из энто-, экто- и мезодермы. На этапе нейрулы происходит закладка отдельных органов.

Важно отметить, что на стадии нейрулы происходит процесс нейруляции - закладывание нервной трубки. Нервная пластинка, образовавшаяся на ранних этапах, прогибается внутрь, при этом ее края сближаются и, замыкаясь, формируют нервную трубку.

Нейруляция

Итак, как уже было сказано, на стадии нейрулы закладываются отдельные органы. Эктодерма образует покровный эпителий и нервную пластинку, мезодерма (из которой в дальнейшем появятся все соединительные ткани), энтодерма - окружает полость первичной кишки (гастроцель), образуя кишечник. От энтодермы отшнуровывается хорда.

Нейрула

Все три зародышевых листка требуют нашего особого внимания, а также понимания того, какие органы и структуры из них образуются.

Эктодерма (греч. ἔκτος - наружный) - наружный зародышевый листок, образует головной и спинной мозг, органы чувств, периферические нервы, эпителий кожи, эмаль зубов, эпителий ротовой полости, эпителий промежуточного и анального отделов прямой кишки, гипофиз, гипоталамус.

Мезодерма (греч. μέσος — средний) - средний зародышевый листок, образует соединительные ткани: кровеносную и лимфатическую системы, костную и хрящевую ткань, мышечные ткани, дентин и цемент зубов, а также выделительную (почки) и половую системы (семенники, яичники).

Энтодерма (греч. entós — «внутренний») - внутренний зародышевый листок, образует эпителий пищевода, желудка, кишечника, трахеи, бронхов, легких, желчного пузыря, мочевого пузыря и мочеиспускательного канала, печень и поджелудочную железу, щитовидную и паращитовидную железы.

Зародышевые листки и их производные

Из зародышевых листков образуются ткани, органы и системы органов. Такой процесс называется органогенезом. В период закладки органов важное значение имеет воздержание матери от вредных привычек (алкоголь, курение), которые могут нарушить процесс дифференцировки клеток и привести к тяжелейшим аномалиям, уродствам плода.

Некоторые лекарства также могут оказывать на плод тератогенный эффект (греч. τέρας — чудовище, урод), приводя к развитию уродств. Периоды закладки органов и система органов вследствие их большой важности носят название критических периодов эмбриогенеза.

Критический период эмбриогенеза

Анамнии и амниоты

Анамнии, или низшие позвоночные - группа животных, не имеющая зародышевых оболочек (зародышевого органа - аллантоиса и амниона). Анамнии проводят большую часть жизни в воде, без которой невозможно их размножение.

К анамниям относятся рыбы, земноводные.

Анамнии

Амниоты - группа высших позвоночных, характеризующаяся наличием зародышевых оболочек. К амниотам относятся пресмыкающиеся, птицы и млекопитающие.

Зародышевый орган, аллантоис, является органом дыхания и выделения.

За счет особых оболочек, развивающихся в ходе эмбрионального развития, амниона и серозы, у амниот формируется амниотическая полость. В ней находится зародыш, окруженный околоплодными водами. Благодаря такому гениальному устройству, амниотам для размножения и развития более не нужно постоянное нахождение в водоеме, они "обрели независимость" от него.

Амниоты

Развитие плода происходит в мышечном органе - матке, которая, сокращаясь во время родов, стимулирует изгнание плода через родовые пути. Питание осуществляется через плаценту - "детское место" - орган, который с одной стороны омывается кровью матери, а с другой - кровью плода. Через плаценту происходит транспорт питательных веществ и газообмен.

Соединяет плаценту и плод особый орган - пуповина, внутри которой проходят артерии, вены.

Плацента и матка

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Эмбриональная индукция — это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка. Явление эмбриональной индукции с начала XX в. изучает экспериментальная эмбриология.

Классическими считают опыты немецкого ученого Г. Шпемана и его сотрудников (1924) на зародышах амфибий. Для того чтобы иметь возможность проследить за судьбой клеток определенного участка зародыша, Шпеман использовал два вида тритонов: тритона гребенчатого, яйца которого лишены пигмента и потому имеют белый цвет, и тритона полосатого, яйца которого благодаря пигменту имеют желто-серый цвет.

Один из опытов заключается в следующем: кусочек зародыша из области дорсальной губы бластопора на стадии гаструлы тритона гребенчатого пересаживают на боковую или вентральную сторону гаструлы тритона полосатого (рис. 8.8). В месте пересадки происходит развитие нервной трубки, хорды и других органов. Развитие может достичь довольно продвинутых стадий с образованием дополнительного зародыша на боковой или вентральной стороне зародыша реципиента. Дополнительный зародыш содержит в основном клетки зародыша реципиента, но светлые клетки зародыша-донора тоже обнаруживаются в составе различных органов.


Рис. 8.8. Пересадка спинной губы от зародыша-донора на брюшную сторону зародыша-реципиента. А—схема опыта; Б—поперечный срез на стадии закладки двух комплексов осевых органов:

1—первичный зародыш, 2—вторичный, индуцированный зародыш

Из этого и подобных опытов следует несколько выводов. Во-первых, участок, взятый из спинной губы бластопора, способен направлять или даже переключать развитие того материала, который находится вокруг него, на определенный путь развития. Он как бы организует, или индуцирует, развитие зародыша как в обычном, так и в нетипичном месте. Во-вторых, боковая и брюшная стороны гаструлы обладают более широкими потенциями к развитию, нежели их презумптивное (предполагаемое) проспективное направление, так как вместо обычной поверхности тела в условиях эксперимента там образуется целый зародыш. В-третьих, достаточно точное строение новообразованных органов в месте пересадки указывает на эмбриональную регуляцию. Это означает, что фактор целостности организма приводит к достижению хорошего конечного результата из нетипичных клеток в нетипичном месте, как бы управляя процессом, регулируя его в целях достижения этого результата.

Г. Шпеман назвал спинную губу бластопора первичным эмбриональным организатором. Первичным потому, что на более ранних стадиях развития подобных влияний обнаружить не удавалось, а организатором потому, что влияние происходило именно на морфогенез. В настоящее время установлено, что главная роль в спинной губе бластопора принадлежит хордомезодермальному зачатку, который назвали первичным эмбриональным индуктором, а само явление, при котором один участок зародыша влияет на судьбы другого,— эмбриональной индукцией.

В 30-е гг. исследователи пытались установить природу индуцирующего действия. Вскоре выяснилось, что разнообразные убитые ткани, вытяжки из самых различных тканей беспозвоночных и позвоночных животных, а также растений, несколько классов химических соединений (белки, нуклеопротеины, стероиды и даже неорганические вещества) могут вызывать индукцию. Таким образом была установлена химическая природа организаторов. Одновременно стало ясно, что специфичность ответа прямо не связана с. химическими свойствами индуктора.

Внимание эмбриологов переключилось на индуцируемые ткани. Оказалось, что специфичность действия индуктора-раздражителя может быть весьмаразличной, а сам эффект индуцирующего воздействия ограничивается способностью того или иного участка развивающегося зародыша воспринимать это воздействие и отвечать на него.

Некоторые индукторы, по-видимому, более или менее специфичны в определении судьбы индуцируемой ткани. Об этом свидетельствуют следующие опыты. Если пересадить спинную губу ранней гаструлы, то индуцируется развитие структур переднего мозга (головной индуктор), если же пересадить спинную губу поздней гаструлы, то развиваются спинной мозг и мезодермальные ткани (туловищный индуктор, рис. 8.9). Было показано также, что наиболее сильное нейрализующее влияние оказывает фракция нуклеопротеинов, а мезодермализующим индуктором оказался белок. Если имплантировать оба эти индуктора в виде смеси клеток или смеси веществ, то получаются хорошо развитые зародыши.


Рис. 8.9. Результаты пересадки головного (А) и туловищного (Б) индукторов

Другие индукторы действуют как неспецифические пусковые механизмы, как бы высвобождая ответ, уже детерминированный в клетках индуцируемой ткани. Было показано, что, например, слуховой пузырек выступает не только в роли индуктора слухового аппарата, но и является активатором различных морфогенетических процессов. Будучи пересажен в область боковой линии эмбриона тритона, он влечет за собой индукцию конечности. Конечность можно индуцировать также пересадкой носовой плакоды или гипофиза. Легче всего добавочные конечности индуцируются в области боковой линии, но они могут быть получены и на брюшной стороне. Эти примеры указывают на то, что специфический ответ зависит не столько от индуктора, сколько отреагирующей области.

Способность эмбрионального материала реагировать на различного рода влияния изменением своей презумптивной судьбы получила название компетенции.Установлено, например, что компетенция к образованию нервной системы у амфибий затрагивает всю эмбриональную эктодерму и возникает с момента начала гаструляции. К концу гаструляции эта компетенция прекращается. Таким образом, изменение хода развития возможно лишь в том случае, если область компетенции к образованию некоторой закладки шире, чем область, из которой она в норме развивается, а также если индукционное действие происходит в определенный интервал онтогенетического развития.

Изучение индукционных взаимодействий у разных представителей типа хордовых показало, что области и сроки компетенции неодинаковы. Так, у асцидий на стадии 8 бластомеров, когда уже все основные зачатки предопределены, проводили некоторые перемещения бластомеров. Материал хордомезодермы и основная часть нейрального материала у них локализованы в заднем вегетативном бластомере. Небольшая часть нейрального материала, формирующего головной ганглий, находится в заднем анимальном бластомере, расположенном над задним вегетативным (рис. 8.10).

Для проверки индукционных взаимодействий между ними анимальный ярус бластомеров поворачивали на 180° так, чтобы задний анимальный бластомер терял контакт с задним вегетативным. Головной ганглий не развился нигде. Это означает, что для развития головного ганглия необходимо индукционное влияние на задний анимальный бластомер со стороны заднего вегетативного. Кроме того, очевидно, что задний анимальный бластомер не обладает автономностью развития, но только он компетентен к восприятию воздействия со стороны заднего вегетативного бластомера, содержащего хордомезодермальный зачаток.


Рис. 8.10. Карта презумптивных зачатков у зародыша асцидий

на стадии восьми бластомеров:

1—эпидермис, 2—нервная пластинка, 3—хорда, 4—энтодерма, 5—сомиты, 6—мезенхима

Во всех других классах хордовых индукционные взаимодействия между хордомезодермальным и нейральным зачатками подобны таковым у амфибий. Полагают, что в ходе эволюции хордовых произошли расширение областей и удлинение срока компетенции. Это расценивают как признак существенного эволюционного прогресса.

Явления индукции многочисленны и разнообразны. Помимо первичной индукции со стороны спинной губы бластопора описаны индукционные влияния на более поздних, нежели гаструляция, этапах развития. Все они являются вторичными и третичными, представляя собой каскадные взаимодействия, типичные для дифференцировки, потому что индукция многих структур зависит от предшествующих индукционных событий. Примером вторичной индукции может служить действие глазного бокала (выпячивание переднего мозга) на прилежащий покровный эпителий, под влиянием чего эпителий впячивается, а затем отшнуровывается хрусталиковый пузырек—зачаток глазного хрусталика (рис. 8.11). Расположенный над хрусталиком покровный эпителий тоже испытывает сложные изменения, теряет пигмент и становится роговичным эпителием. Это пример третичной индукции. Таким образом получается, что глазной бокал возникает только после развития передней части головного мозга, хрусталик — после формирования бокала, а роговица — после образования хрусталика.

Вместе с тем индукция носит не только каскадный, но и переплетающийся характер, т.е. в индукции той или иной структуры может участвовать не одна, а несколько тканей. В свою очередь, такая структура может служить индуктором для нескольких других тканей. Например, глазной бокал служит главным, но не единственным индуктором хрусталика. Морфогенез всегда сопровождается значительными перемещениями тканей друг относительно друга. Так, презумптивный хрусталик, т.е. эпидермис, из которого в последующем должен развиться хрусталик, во время гаструляции лежит над энтодермой будущей глотки, которая служит первым индуктором хрусталика. Затем под этим эпидермисом оказывается сердечная мезодерма, которая тоже действует как индуктор. И только позднее, во время нейруляции на переднем конце нервной трубки выпячиваются глазные пузыри, образующие глазной бокал и сетчатку, являющуюся главным индуктором хрусталика (рис. 8.12).


Рис. 8.11. Развитие (А —Г) глаза у хвостатой амфибии:

1—хрусталиковая плакода, 2—пигментный эпителий, 3—сетчатка, 4—роговица, 5—хрусталиковые волокна, 6—хрусталиковый эпителий, 7—глазной бокал


Рис. 8.12. Последовательные индукционные взаимодействия,

необходимые для образования хрусталика у зародыша амфибии:

I—ранний зародыш, II—гаструла, III—нейрула, IV—стадия хвостовой почки, V—личинка, VI—взрослая особь; 1—плакода, 2—пузырек, 3—волокна, а—энтодерма, б—сердечная мезодерма, в—сетчатка

Удаляя ту или иную из индуцирующих тканей, определили степень участия каждой из них в индукции хрусталика. Оказалось, что при удалении сетчатки глазного бокала у 42% зародышей амфибий все же формировались хрусталики и, следовательно, энтодерма и мезодерма в сумме обладают почти таким же индуцирующим действием, как и сетчатка глазного бокала. Полагают, что многочисленность индуцирующих тканей может иметь решающее значение для точного установления места формирования органа. Кроме того, сети индукции могут играть важную роль в канализации развития, обеспечивая нормальное течение органогенеза, даже если один из компонентов ин-


Рис. 8.13. Влияние удаления апикального эктодермального гребня

на развитие почки крыла.

А—схема расположения почки крыла; Б—почка крыла; В—недоразвитие скелета (пунктир) после удаления апикального гребня:

1—почка крыла, 2 —апикальный эктодермальный гребень, 3—мезенхима, 4 —плечевая кость, 5—локтевая и лучевая кости

Чаще всего близлежащие участки зародыша оказывают взаимное влияние друг на друга. Демонстративным примером являются взаимодействия в зачатке конечности. Конечность развивается из скопления клеток, происходящих из боковой мезодермы, и покрывающих их клеток эктодермы (рис. 8.13). Развитие конечности начинается с активации клеток боковой мезодермы в непосредственной близости от сомитов, которые, возможно, и оказывают индуцирующие импульсы на мезодерму в области будущей конечности. Активированные мезодермальные клетки зачатка конечности влияют на покрывающую их эктодерму, в результате чего она утолщается. Образовавшееся утолщение эпидермиса на его верхушке называют апикальным эктодермальным гребнем. Последний стимулирует рост почки конечности (при удалении его рост почки конечности прекращается). Мезодерма же поддерживает гребень в активном состоянии и определяет форму конечности. Например, мезодерма из почки крыла при соединении с эктодермой почки ноги образует крыло, покрытое перьями, или мезодерма из почки конечности утиного зародыша с эктодермой куриного приводит к развитию перепончатой конечности.

Различают гетерономную и гомономную виды индукции. К гетерономной относят случаи, подобные описанному, при которых один кусочек зародыша индуцирует иной орган (хордомезодерма индуцирует появление нервной трубки и всего зародыша в целом). Гомономная индукция заключается в том, что индуктор побуждает окружающий материал к развитию в том же направлении, что и он сам. Например, область нефротома, пересаженная другому зародышу, способствует развитию окружающего материала в сторону формирования головной почки, а прибавление в культуру фибробластов сердца маленького кусочка хряща влечет за собой процесс образования хряща.

Чтобы воспринять действие индуктора, компетентная ткань должна обладать хотя бы минимальной организацией. Одиночные клетки не воспринимают действие индуктора, а чем больше клеток в реагирующей ткани, тем активнее ее реакция. Для оказания индуцирующего действия иногда достаточно лишь одной клетки индуктора.

Индукционные взаимодействия могут проявляться в культуре ткани in vitro, но по-настоящему полноценными они бывают только в структуре целостного организма.

Весьма интересны результаты опытов, помогающие оценить взаимосвязь индукционных взаимодействий с цитодифференцировкой и морфогенезом. Ранее уже было описано определяющее влияние мезенхимы на морфогенез конечностей позвоночных.

Многочисленными опытами показано также большое влияние мезенхимы на морфогенез желез эпителиального происхождения. Легочная энтодерма, например, при выращивании с печеночной мезенхимой приобретает строение печеночных балок, а эпителий молочной железы под влиянием мезенхимного зачатка слюнной железы приобретает морфологию слюнной железы. Это происходит как при выращивании in vitro, так и при трансплантации в организм животного-реципиента. Подобные результаты с несомненностью указывают на необходимость индуцирующего влияния мезенхимы на морфогенез.

Однако не менее интересен факт, что морфогенез не всегда сопряжен с определенным направлением дифференцирован эпителия. Так, рекомбинантная слюнная железа, полученная из зачатка молочной железы и мезенхимы слюнной, при подсадке лактирующей самке-реципиенту начинает вырабатывать молоко несмотря на то, что имеет морфологию по типу слюнной железы. Это свидетельствует о возможности разобщения, об автономности процессов морфогенеза и цитодифференцировки и может быть объяснено более ранней детерминацией цитодифференцировки другими, более ранними актами индукции. Подобные наблюдения позволяют по-другому взглянуть на возможности преобразований морфогенезов в процессе эволюции.

Таким образом, явления индукции обнаружены на самых разных этапах развития многих позвоночных. В акте индукции следует различать два компонента: индуктор и реагирующую область. Изложенные выше положения кратко обобщены на схеме 8.4.

В настоящее время интенсивно ведутся работы по изучению молекулярных и клеточных механизмов индукции. В теоретическом смысле явление эмбриональной индукции помогает по-новому оценить взаимоотношение таких процессов, как зависимая дифференцировка и детерминация, а также цитодифференцировка и морфогенез.

Деминерализация эмали
26.11.2018

Содержание:


Деминерализация эмали является одним из самых распространенных нарушений в стоматологии. Оно связана в первую очередь с вымыванием кальция и других важных минеральных веществ из твердых зубных тканей. Стоматологи считают этот патологический процесс начальным признаком кариозного поражения. Но если вовремя обратиться к профессионалу, можно провести реминерализацию зубов — процедуру по обогащению эмали укрепляющими и уплотняющими питательными веществами. Эта методика обеспечивает восстановление прочности твердых тканей, предупреждает развитие кариеса и других стоматологических заболеваний.

Основные причины

В полости рта человека постоянно находятся кариесогенные микроорганизмы и другие бактерии, которые входят в состав слюны и являются условно-патогенными. Они не представляют угрозы до возникновения определенных предрасполагающих факторов.

При изменении активности слюнных желез, снижении кислотности слюны, уменьшении ее количества или при низком уровне ухода а полостью рта создаются условия, благоприятные для размножения условно-патогенных и патогенных микроорганизмов. Они питаются остатками продуктов (преимущественно — простыми углеводами) и выделяют в процессе своей жизнедеятельности опасную кислоту. Она способна разрушать дентин.

Главная причина уменьшения плотности эмали — активное размножение кариесогенных бактерий. Способствует вымыванию минералов нерегулярный или недостаточный уход.



Кроме основных причин специалисты выделяют несколько предрасполагающих факторов:

хроническое воспаление десен;

гормональные нарушения, тяжелое течение эндокринных болезней, включая сахарный диабет;

исправление прикуса ортодонтическими аппаратами, которые затрудняют ежедневную гигиену, снижают качество ухода за полостью рта;

аномалии зубочелюстного аппарата

высокое содержание в рационе простых углеводов: сладости, выпечка, сладкие напитки;

отказ от своевременного удаления камня;

запоздалое лечение стоматологических болезней;

нарушение местной микрофлоры, спровоцированное снижением общего и местного иммунитета, наличием хронических заболеваний, перенесенных сложных операций.

Перечисленные выше причинные факторы резко повышают риск вымывания полезных минеральных веществ. В результате этого полость рта становится беззащитной перед бактериями, которые начинают активно размножаться и провоцировать инфекционно-воспалительные процессы.

Главный провоцирующий фактор при деминерализации — частое употребление сладостей. Сахар приводит к критическому снижению значения рН — ниже 4,5. В результате этого агрессивная кислота начинает патологически воздействовать на дентин. А его истончение отрицательно влияет не только на стоматологическое здоровье, но и на общее состояние пациента.

Из-за большого количества инфекционных агентов могут часто рецидивировать стоматиты, тонзиллиты, трахеиты, патологии верхних дыхательных путей. Поэтому при первых жалобах рекомендуется как можно скорее посетить врача-стоматолога.

Группа риска

Риск появления болезни выше при следующих особенностях питания, образа жизни и состояния здоровья:

наличие системных заболеваний;

гиперсаливация (недостаток слюны);

ежедневное употребление сахара;

снижение фтора в питьевой воде;

очаги хронической инфекции в виде тонзиллита, аденоидов;

недостаток микроэлементов в рационе питания;

отказ от использования фторсодержащих паст;

чистка зубов менее 2-х минут;

наличие реставраций, особенно существующих длительное время;

брекеты и другие ортодонтические конструкции;

использование съемных и несъемных протезов.

При контакте твердых тканей с высококонцентрированной кариесогенной кислотой происходит не только их разрушение, но и подавление защитных механизмов пульпы. Это способствует стремительному проникновению инфекции в корневую систему с возникновением абсцессов, очагов некроза и воспаления.

Начальные признаки

Обнаружить первые симптомы нарушения достаточно сложно, особенно при плотном налете. Вымывание кальция и других полезных компонентов обычно происходит незаметно. При внимательном рассмотрении в зеркале пациент замечает белые меловидные пятна разного размера. Особенно часто их можно увидеть на молочных зубках у детей. При этом зубная поверхность остается гладкой, но в некоторых местах можно заметить шероховатость, что уже говорит о прогрессировании начальной формы кариеса.

Никаких болевых ощущений и продолжительной реакции на термические и химические раздражители нет. Человек даже не догадывается о ослаблении защитных свойств и высоком риске развития кариозного процесса.

Основные симптомы

Деминерализация развивается постепенно. Если пациент уделяет время регулярным профилактическим осмотрам и посещением доктора, то врач обнаруживает патологические изменения и проводит реминерализационную терапию.

В разгар заболевания возникают характерные изменения:

эмаль становится шероховатой и утрачивает естественный блеск;

из-за повышения пористости зубная поверхность быстрее желтеет и темнеет в результате действия неблагоприятных факторов, курения;

возможно повышение чувствительности в ответ на термические и химические раздражители.

При появлении первых подозрительных признаков необходимо сразу записаться на прием к стоматологу. Если откладывать с лечением, твердые ткани начнут разрушаться под действием кариозного процесса. Инфекция может затрагивать пульту, связочный аппарат, вызывать опасные осложнения. Выраженный воспалительный процесс может потребовать проведения удаления пораженных зубов. Гораздо проще предупредить развитие кариеса на этапе деминерализации, когда можно обойтись без сложных хирургических методик. Реминерализация зубов намного выгоднее: восстановление плотности и минерального состава эмали стоит дешевле, чем проведение лечения глубокого кариозного процесса и его осложнений.

Принципы лечения


Подход к лечению должен быть комплексным. Важно установить основные предрасполагающие факторы, которые могут ослаблять местный иммунитет, вызывать снижение плотности твердых структур. При обнаружении сопутствующих нарушений (гипосаливация, тонзиллит, дисбактериоз полости рта) профильные специалисты проводят их коррекцию. Врач должен оценить качество питания больного. Если в рационе в большом количестве присутствуют простые углеводы и не хватает определенных питательных веществ, необходимо изменять пищевые привычки, восполнять недостаток витаминов и микроэлементов с помощью специальных препаратов и биодобавок.

Тактика врача-стоматолога зависит в первую очередь от выраженности патологического процесса. На начальном этапе можно ограничиться процедурой реминерализации. Если заболевание запущено, специалист высверливает пораженные ткани и замещает их пломбировочным материалом.

Ну в большинстве случаев можно ограничиться реминерализационной терапией. Она протекает в несколько этапов:

Профессиональная чистка зубной поверхности от твердых и мягких отложений. Чаще всего налет образуется в области шеек и на задней поверхности, которая недоступна для просмотра без использования зеркала. Избавиться от камня и микробного налета можно с помощью ультразвука или других современных методов профессиональной гигиены.

Просушивание поверхности зубов от остатков слюны. Это готовит эмаль к использованию восстанавливающего компонента.

Нанесение специальных средств, насыщенных ионами калия и кальция.

Использование закрепляющих препаратов с защитными свойствами и способностью ускорять регенерацию.

Реминерализационная терапия не вызывает болезненных ощущений и занимает не больше часа. Рекомендуется проведение 8-10 сеансов.


Фторирование


Восстановление прочности эмали требует наличия фтора. В здоровом состоянии его можно получить из продуктов питания, воды, стоматологических паст. Но при начавшемся процессе растворения твердых тканей необходимо проводить глубокое фторирование. Оно тормозит рост бактерий, выделяющих кислоту, повышает устойчивость эмали к действию неблагоприятных факторов.

Процедуру рекомендуется проводить не только при деминерализации, но и с целью профилактики ее появления и развития кариеса. Фторирование можно использовать в детском возрасте. Процедура будет особенно полезна после смены зубов. Детская эмаль содержит меньше минералов. Она продолжает укрепляться в течение нескольких лет после появления постоянных зубов. Этот период наиболее опасен для возникновения кариеса. Фторирование снижает риск развития болезни.

Этапы фторирования

Профессиональная гигиена, удаление зубных отложений.

Высушивание поверхности эмали.

Нанесение эмаль-запечатывающего средства, которая содержит фтор, магний и медь. Состав оставляют на несколько минут.

Нанесение на поверхность зубов гидроокиси меди кальция, что вызывает практически мгновенное образование в пористых очагах микрокристаллов кальция, меди и магния, которые окружены кремниевой кислотой. Она предупреждает последующее вымывание минеральных компонентов.

Завершение фторирования ополаскиванием рта.

Результат сохраняется на 1-2 года. Примерно через этот промежуток времени рекомендуется проводить профилактическую реминерализацию в кабинете стоматолога.

Профилактика

Эффективность профилактики кариеса и деминерализации давно доказана ведущими стоматологами. Профилактические мероприятия включают в себя простые и легко выполнимые правила:

Качественный уход за полостью рта. Рекомендуется чистить зубы или хотя бы ополаскивать их специальным раствором или водой после каждого приема пищи. НА работу можно брать с собой готовые антисептические ополаскиватели. Дополнительно такие средства могут содержать противовоспалительные компоненты, полезные для десен.

Применение средств гигиены с качественным составом, в котором присутствует в том числе фтор. Перед покупкой пасты о его наличии можно посмотреть в описании состава.

Регулярные профилактические осмотры полости рта, посещение стоматолога 1-2 раза в год.

Своевременное лечение стоматологических заболеваний. Обращение к специалисту при появлении первых жалоб и нарушений. Также важно не откладывать лечение ЛОР-болезней.

Соблюдение принципов здорового питания, ограничения в рационе простых углеводов. После употребления сладостей рекомендуется обязательно чистить зубы, чтобы удалить остатки сахаров, которые являются питательной средой для кариесогенных бактерий.

Использование поливитаминных комплексов, особенно при снижении иммунитета и восстановлении после тяжелых инфекционных заболеваний и операций.

Своевременная коррекция прикуса, удаление старых пломб, которые повышают риск инфекционных процессов, воспаления десен.

Обратите особое внимание на качество личной гигиены. При наличии провоцирующих факторов и хронических заболеваний посещайте стоматолога чаще. Во время осмотра профессионал использует специальные зеркала и инструменты, которые позволяют легко выявлять участки вымывания кальция и белесые пятна, а также другие характерные признаки.

Некоторые заболевания способствуют снижению защитных свойств слизистой. Для укрепления иммунитета можно использовать препараты с иммуностимулирующими свойствами. Они предупреждают частые рецидивы стоматологических патологий.

При использовании съемных конструкций для коррекции прикуса не забывайте их регулярно промывать с использованием антисептических растворов. Для очистки брекетов необходимо приобретать круглую щетку.

Лечение зубов представляет собой целый комплекс мероприятий и стоматологических процедур, направленных на ликвидацию воспаления и восстановление физиологической функций жевательного аппарата.

От конкретного фактора, который вызвал повреждения слизистой рта, травмы подразделяются на несколько видов. Острая механическая травма - повреждения, которые возникают вследствие эпилептического приступа, нанесения удара, стоматологических манипуляций. Острая травма такого вида может быть:

В современной стоматологии пародонтитом называется наличие очага воспаления в околозубной ткани. Он характеризуется воспаленными деснами, разрушенными соединениями с зубами, деструкцией в альвеолярной кости.

Пульпой называется содержимое зубной полости, включающее соединительную ткань, нервные окончания и кровеносные сосуды окончания. При глубоко проникающих видах кариеса может происходить ее воспаление в результате воздействия болезнетворных микроорганизмов и их токсинов, называемое пульпитом.

Читайте также: