В каком сечении профиль косого зуба совпадает с профилем прямого зуба

Опубликовано: 27.04.2024

date image
2014-02-12 views image
8088

facebook icon
vkontakte icon
twitter icon
odnoklasniki icon



Геометрические параметры.У косозубых колес зубья располагаются под некоторым углом к образующей делительного цилиндра (рисунок 11.9). Оси колес остаются параллельными. Для нарезания косых зубьев используют инструмент такого же исходного профиля, как и для нарезания прямых. Поэтому контур косого зуба в нормальном сечении n – n совпадает с контуром прямого зуба. Модуль в этом сечении является стандартным


Рисунок 11.9 – Схема косозубой цилиндрической передачи (геометрические размеры)

В торцовом сечении tt параметры косого зуба изменяются в зависимости от величины угла р:

Индекс n приписывают параметрам в нормальном сечении, а индекс t приписывают параметрам в торцовом сечении.

Принято считать, что прочность зуба определяют его размеры и форма в нормальном сечении. Форму косого зуба в нормальном сечении определяют через параметры эквивалентного прямозубого колеса (рис. 11.10).

Нормальное к зубу сечение образует эллипс с полуосями

с=r и е= , где . В зацеплении находятся зубья, расположенные на малой оси эллипса, так как второе колесо находится на расстоянии . Радиус кривизны эллипса на малой оси (см. геометрию) .


Рисунок 11.10 – Схема для определения эквивалентных параметров косозубых цилиндрических передач

В соответствии с этим форма косого зуба в нормальном сечении эквивалентна прямозубому колесу, диаметр которого

Увеличение эквивалентных параметров (dv и zv) с увеличением угла повышает прочность косозубых передач.

Многопарность и плавность зацепления. В отличие от прямых, косые зубья входят в зацепление не сразу по всей длине, а постепенно. Зацепление перемещается в направлении от точек 1 к точкам 2 (рисунок 11.9).

Расположение контактных линий в поле косозубого зацепления показано на рисунке 11.11, а, б (сравни с рисунком 11.3 – прямозубое зацепление). При движении линии контакта перемещаются в поле зацепления в направлении, показанном стрелкой. В рассматриваемый момент времени в зацеплении находится три пары зубьев 1, 2 и 3. Пара 2 находится в зацеплении по всей длине зубьев, а пары 1 и 3 – лишь частично. Затем пара 3 выходит из зацепления и перемещается в положение 3', а в зацеплении еще остались две пары 2' и 1’. В отличие от прямозубого косозубое зацепление не имеет зоны однопарного зацепления. В прямозубом зацеплении нагрузка с двух зубьев на один или с одного на два передается мгновенно.


Рисунок 11.11 – Многопарность косозубого цилиндрического зацепления

Это сопровождается ударами и шумом. В косозубых передачах зубья нагружаются постепенно по мере захода в поле зацепления, а в зацеплении всегда находится минимум две пары зубьев. Плавность косозубого зацепления значительно уменьшает шум и динамические нагрузки.

Косозубые колеса могут работать без нарушения зацепления даже при коэффициенте торцевого перекрытия ; (рисунок 11.11, б). Отношение

называют коэффициентом осевого перекрытия. Рекомендуется принимать ≥ 1,1. В косозубом зацеплении нагрузка распределяется на всю суммарную длину контактных линий 1, 2, 3. Удельная нагрузка уменьшается с увеличением суммарной длины контактных линий Из рисунка 11.11 можно установить, что при , равному целому числу,

и не изменяется при движении, так как уменьшению линии 3 всегда соответствует равное увеличение линии 1. Из формулы 11.23 видно, что растет с увеличением , что выгодно. Однако при увеличении увеличиваются осевые нагрузки в зацеплении (см. далее), поэтому рекомендуют принимать = 8 – 20°.

На боковой поверхности косого зуба линия контакта располагается под некоторым углом (рисунок 11.12, а). Угол , увеличивается с увеличением . По линии контакта нагрузка распределяется неравномерно. Ее максимум на средней линии зуба, так как при зацеплении серединами, зубья обладают максимальной суммарной жесткостью.




При движении зуба в плоскости зацепления линия контакта перемещается в направлении от 1 к 3 (рисунок 11.12, б),при этом опасным для прочности может оказаться положение 1, в котором у зуба отламывается угол. Трещина усталости образуется у корня зуба в месте концентрации напряжений и затем распространяется под некоторым углом . Вероятность косого излома отражается на прочность зубьев по напряжениям изгиба, а концентрация нагрузки q – на прочность по контактным напряжениям.


Рисунок 11.12 – Расположение линии контакта на боковой поверхности

Силы в зацеплении. В косозубой передаче (рисунок 11.13) нормальную силу Fn раскладывают на три составляющие:


Рисунок 11.13 – Силы в зацеплении косозубой цилиндрической передачи

осевую силу , (11.24)

Тогда нормальная сила .

Осевая сила в зацеплении дополнительно нагружает опоры валов, что является недостатком косозубых колес.

Расчет зубьев по контактным напряжениям.Для косозубых колес удельная нагрузка с учетом формул (11.23) и (11.24)

где Кнα– коэффициент неравномерности нагрузки одновременно зацепляющихся пар зубьев.

Заменяя в формуле (11.8) значение dw1 на диаметр эквивалентного колеса dvl [см. формулу (11.20)], получаем

Сравнивая отношения в формуле (1.4) для прямозубых (формулы 11.6 и 11.8) и косозубых колес, определяем

где Z коэффициент повышения прочности косозубых передач по контактным напряжениям. Используя формулу (11.9) получим для косозубых передач

В косозубых передачах, из–за ошибок при нарезании зубьев, может быть частично нарушено двухпарное зацепление. Это приводит к тому, что одна пара зубьев нагружается больше чем другая, поэтому коэффициент КНα учитывает неравномерность нагрузки. При этом различают КНα для расчетов по контактным напряжениям и KFα для расчетов по напряжениям изгиба. Значения коэффициентов выбирают по рекомендациям из справочников в зависимости от окружной скорости в зацеплении и степени точности изготовления. При проектном расчете эта информация не известна, поэтому значение ZH в формуле (11.29) определяют приближенно. Принимая средние значения = 12°, = 1,5 и КНα= 1, 1, получаем Zнβ =0,85, а формулы (11. 10) и (11. 12) проектного расчета путем умножения числовых коэффициентов на для косозубых передач будут иметь вид

Расчет зубьев по напряжениям изгиба.Расчет выполняют с учетом увеличения прочности косозубых передач по сравнению с прямозубыми. Тогда формулы (11.18) и (11.19) для косозубых передач будут иметь вид: для проверочного расчета,

для проектного расчета (принимая приближенно КFn = 1)

где Z коэффициент повышения прочности косозубых передач по напряжениям изгиба:

где а – коэффициент перекрытия учитывающий уменьшение нагрузки ввиду многопарности зацепления. Его определяют по формуле:

Знак «+» – для внешнего, а «–» – для внутреннего зацепления.

KFa коэффициент неравномерности распределения нагрузки одновременно зацепляющихся пар зубьев (выбирают по справочникам), – коэффициент, учитывающий повышение изгибной прочности вследствие наклона контактной линии к основанию зуба.

Коэффициент формы зуба yF выбирают по справочникам в зависимости от эквивалентного числа зубьев zv. Значения z1 , m и выбирают по справочникам.

Знать устройство, принцип работы, классификацию и сравнительную характеристику зубчатых передач; особенности геометрии и расчета на прочность косозубых и шевронных зубчатых колес.


У косозубых колес зубья образуют с образующей делительного ци­линдра угол β. Оси колес остаются параллельными. Зубья нарезают теми же инструментами, что и прямые зубья. У пары зубчатых колес с внешним зацеплением одинаковые углы наклона зуба, но зубья проти­воположно направлены. У косозубого колеса параметры измеряют в торцовом (окружном) и нормальном (п—п) направлениях (рис. 5.1).

Геометрические параметры косозубых цилиндрических колес

Нормальный модуль: m = mn = Pn

Шаг в нормальном сечении рп; окружной шаг рг .



Диаметр вершин da = d + 2тп; диаметр впадин df = d – 2,5тn.


Коэффициент осевого перекрытия косозубой передачи

где b — ширина венца колеса; рх — осевой шаг.

Силы в зацеплении косозубой передачи

Нормальную силу Fn в зацеплении можно разложить на три состав­ляющие (рис. 5.2, а):



где F, — окружная сила,



Fr радиальная сила, Fa осевая сила,

· При работе косозубых передач зубья входят в зацепление не сразу по всей длине, а постепенно.

· Передаваемая нагрузка распределяется на несколько зубьев.

· В зацеплении всегда находятся минимум две пары зубьев.

· По сравнению с прямозубыми передачами повышаются нагру­зочная способность, плавность и бесшумность работы. Косозубые переда­чи широко применяют в технике.

· С увеличением угла наклона увеличиваются длина контактной ли­нии и коэффициент перекрытия, т. е. плавность и бесшумность работы повышаются.

· Одновременно увеличивается осевое усилие, дополнительно нагружающее валы и подшипники.

·



Для ограничения осевых сил угол наклона выбирают в диапазоне 8. 20°, стандартные косозубые колеса изготовляют с углом β

Расчет косозубых колес на контактную прочность и изгиб


Проектировочный расчет по контактным напряжениям

Профиль косого зуба в нормальном сечении совпадает с профилем прямого зуба тп = т. В колесах с косым зубом стандартизирован нор­мальный модуль. При получении формул для расчета на прочность косозубого колеса используют эквивалентное прямозубое колесо, у которо­го форма зуба совпадает с формой зуба в нормальном сечении косозубого колеса, радиус равен радиусу кривизны эллипса, полученного в сечении п—п зуба косозубого колеса. Эквивалентное колесо изображе­но на рис. 5.3.

Параметры эквивалентного колеса определяют по формулам:





Ширина эквивалентного прямозубого колеса равна длине зуба косозубого колеса.

Для расчета на прочность по контактным напряжениям и на изгиб используем формулы для прямозубого колеса. Подставив параметры эквивалентного колеса, получим формулу для проектировочного расче­та передачи:


Для косозубых передач Ка = 43 МПа 1/3 . Косозубые передачи работа­ют более плавно, поэтому коэффициент Кменьше, чем у прямозубых.

Допускаемые напряжения рассчитывают так же, как для прямозу­бых колес.

Полученное значение межосевого расстояния округляют до ближай­шего стандартного значения, определяют геометрические параметры колес и проверяют полученную передачу по контактным напряжениям.

Некоторые рекомендации по параметрам редукторов помещены в табл. П9 Приложения.

Проверочный расчет по контактным напряжениям выполняют по формуле


где КНа, Кщ, KHv, KFa, Кп, KFv — коэффициенты нагрузки (см. расчет прямозубых передач).

Если условие не выполняется, увеличивают ширину колеса b2; если этого недостаточно, увеличивают межосевое расстояние.

Проверка на изгиб

Наклонное положение зубьев увеличивает их прочность на изгиб и плавность работы. Для расчета косозубых колес используют формулу для прямозубых и вводят поправочный коэффициент Yfβ коэффици­ент, учитывающий наклон зуба, Yβ = 0,7. 0,9.

Проверку на изгиб косозубых колес выполняют по формуле


Коэффициент формы зуба YF определяют по таблицам прямозубых колес по числу зубьев эквивалентного колеса


Допускаемое напряжение [af] определяется так же, как для прямо­зубых колес.

Для обеспечения равной прочности по контактным напряжениям и на изгиб можно определить нормальный модуль передачи по формуле


где aw — полученное при расчете по контактным напряжениям межосе­вое расстояние; b2 = ψbaaw.

Достоинства:
практически неограниченная передаваемая мощность
малые габариты и вес
стабильное передаточное отношение
высокий КПД, который составляет в среднем 0,97 — 0,98

Недостатки:
шум в работе на высоких скоростях (может быть снижен при применении зубьев соответствующей геометрической формы и улучшении качества обработки профилей зубьев)

Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния

При высоких угловых скоростях вращения рекомендуется применять косозубые шестерни, в которых зубья входят о зацепление плавно, что и обеспечивает относительно бесшумную работу.
Недостатком косозубых шестерен является наличие осевых усилий, которые дополнительно нагружают подшипники. Этот недостаток можно устранить, применив сдвоенные шестерни с равнонаправленными спиралями зубьев или шевронные шестерни.
Шевронные шестерни, ввиду высокой стоимости и трудности изготовления применяются сравнительно редко — лишь для уникальных передач большой мощности.
При малых угловых скоростях вращения применяются конические прямозубые шестерни, при больших — шестерни с круговым зубом, которые в настоящее время заменили конические косозубые шестерни, применяемые ранее.
Конические гипоидные шестерни тоже имеют круговой зуб, однако оси колес в них смещены, что создает особенно плавную и бесшумную работу. Передаточное отнесение в зубчатых парах колеблется в широких пределах, однако обычно оно равно 3 — 5

Основные определения из теории зацепления шестерен

Начальными называются воображаемые окружности, которые при зацеплении шестерен катятся без скольжения одна по другой

Делительными называются воображаемые окружности, по которым происходит номинальное деление зубьев. Для них справедливо уравнение:
d д = mZ
Если шестерни не имеют коррекции, то начальные и делительные окружности совпадают

Окружностями выступов и впадин называются окружности, ограничивающие вершины и впадины зубьев

Основными называются окружности, по которым развертываются эвольвенты, очерчивающие профили зубьев
d 0 = d д cosα

Шагом t называется расстояние по дуге делительной окружности между одноименными профилями соседних зубьев

Основным шагом t 0 называется шаг по основной окружности

Модулем называется отношение диаметра делительной окружности к числу зубьев или шага к π

Ритчем р называется число зубьев, приходящееся на один дюйм делительной окружности

РИТЧ

Линией зацепления ЛЗ называется геометрическое место точек контакта зубьев в зацеплении. В эвольвентном зацеплении ЛЗ — прямая, нормальная к профилю зубьев в полюсе зацепления и касательная к основным окружностям

Углом зацепления α называется угол между линией зацепления и перпендикуляром к линии центров

Углом наклона спирали зубьев косозубых шестерен β называется угол между осью зуба и образующей делительного цилиндра или конуса

Коэффициентом перекрытия ε называется отношение дуги зацепления к основному шагу

Коэффициентом коррекции ξ называется отношение величины профильного смещения к модулю

Материал и термообработка шестерен

Стальные шестерни изготавливаются из качественных и легированных сталей с термообработкой.
Наибольшее распространение получили: для серийного производства — улучшение; для серийного и массового — цементация и закалка (при наличии соответствующего оборудования — закалка токами высокой частоты)

Термообработка Твердость Материал Примечания
Улучшение (закалка до малой твердости) НB
260-300
Сталь 40
Сталь 45
Cталь 40X
Сталь 45Х
Окончательная нарезка зубьев после термообработки во избежание коробления
Закалка HRC
40-50
Сталь 40Х
Сталь 40ХН
Необходима шлифовка зубьев по профилю для устранения коробления
Цементация и закалка HRC
56-63
Сталь 20Х
Сталь 18ХГТ
12ХНЗА
20ХНЗА
18ХНЗА
Окончательная обработка зубьев до термообработки. Коробление невелико
Закалка ТВЧ НRC
50-60
Сталь 45
Сталь 40Х
Только для крупных шестерен с модулем > 8

Расчетные геометрические зависимости

Прямозубые и косозубые цилиндрические шестерни

Передаточное отношение i :

где, f 0 — коэффициент высоты зуба; t и m — нормальный шаг и модуль; t s и m s — торцевой шаг и модуль; β — угол спирали зуба

Ряд наиболее распространенных стандартных модулей:
… 1; 1,5; 2; 2,5; 3; 3,5; 4; 4,5; 5; 6; 7; 8; 10; 12 …
Стандартный угол зацепления α — 20°. Для бесшумной и плавной работы косозубых шестерен необходимо перекрытие зубьев: последующий зуб должен входить в зацепление раньше, чем выйдет из зацепления предыдущий

Прямозубые конические шестерни

Все o6paзующие зубьев сходятся в одной точке пересечения осей. Номинальный делительный диаметр, шаг и модуль отсчитываются по большому основанию делительного конуса

Передаточное отношение i:


Средний диаметр и модуль:

где, m c — средний модуль;
L — конусное расстояние — длина образующей делительного конуса;
b — ширина зубьев шестерен;
γ — углы конусности

Силы, действующие в зацеплении шестерен

Прямозубые цилиндрические шестерни

Нормальная сила, действующая по линии зацепления, разлагается на две составляющие силы:
P = P ncosα — окружное усилие;
R = P nsinα — радиальное усилие

На валы действуют те же силы, что и на зубья шестерен, и, кроме того, еще крутящий момент:

Косозубые цилиндрические шестерни

Здесь, вследствие наклона зубьев к образующей, дополнительно возникает еще осевое усилие
окружное усилие

радиальное усилие:

осевое усилие:

нормальное усилие:

Силы P, R, A необходимо определить для расчета валов и подшипников, сила P n необходима для расчета зубьев шестерен на прочность. Силу A можно уравновесить, применив сдвоенные косозубые шестерни с разнонаправленными спиралями зубьев или шевронные

Конические прямозубые шестерни

Осевое усилие для шестерни или радиальное для колеса: Aш = Rк = R sinγш = P tgα sinγш
Радиальное усилие для шестерни или осевое для колеса: Rш = Aк = R cosγш = P tgα cosγш
Нормальное усилие:

Силы Р, Aш, Rш — для расчета валов и подшипников, cила Рn — для расчета зубьев на прочность;
dэ, Zэ — диаметры и числа зубьев эквивалентных цилиндрических колес

Воображаемые эквивалентные цилиндрические колеса строятся в плоскости мгновенного зацепления основных конических колес так, что оси тех и других совпадают. Работают эти колеса точно так же, как и основные конические, поэтому такое построение удобно использовать для выяснения действующих сил и напряжений в конических колесах

Дефекты шестерен

Закрытыми называются передачи, заключенные в пыленепроницаемый закрытый корпус, с организованной смазкой.
Открытыми называются передачи, не защищенные от пыли, с нерегулярной смазкой

Износ поверхностей зубьев — очень значительный в открытых передачах и небольшой в закрытых. Меры борьбы с износом — повышение поверхностной твердости зубьев

Питинг — поверхностное выкрашивание зубьев в зоне полосной линии. Возникает вследствие усталости поверхностного слоя зубьев в результате высоких контактных напряжений. Питинг начинается с образования усталостных микротрещин, которые под влиянием циклических нагрузок постепенно развиваются, чему способствует высокое давление масла в зоне контакта зубьев. В открытых передачах питинг обычно не возникает, так как микротрещины изнашиваются раньше, чем успеют развиться.
Меры борьбы с питингом заключаются в повышении жесткости корпусов, валов и опор и точности их изготовления с целью увеличения площадок контакта зубьев

Усталостная изгибная поломка зубьев.
Меры борьбы — увеличение модуля или улучшение качества материала и термообработки

Задиры поверхностей зубьев могут иметь место в тихоходных сильно нагруженных передачах.
Меры борьбы — применение противозадирных смазок, содержащих животные жиры и графит

Расчет зубьев цилиндрических прямозубых шестерен

Расчет на контактную прочность поверхности зубьев

Расчет базируется на известной формуле Герца для контактного сжатия цилиндров с параллельными осями:

Характерными особенностями контактного сжатия являются:
а) весьма ограниченная площадь контакта я а связи с этим высокие напряжения;
б) объемный характер напряженного состояния;
в) эллиптическая эпюра контактных напряжений, распространяющаяся только на зону контакта
Теоретически интенсивность нагрузки:

Выразим r м и r к через межцентровое расстояние А:

В действительности расчетная интенсивность нагрузки будет отличаться от теоретической на величину поправочных коэффициентов Кк и Кд

Здесь: Кк — коэффициент концентрации нагрузки, выражающий неполноту контакта по линии. Он зависит от деформации валов и ширины шестерен. Кд — коэффициент динамичности нагрузки, зависящий от окружной скорости и чистоты обработки поверхности зубьев.

Приведенная кривизна зубьев шестерен в точке контакта

(Знак минус для внутреннего зацепления).

Здесь: ρш и ρк — мгновенные радиусы кривизны в полосе зацепления

Приведенный модуль упругости:

Здесь: Еш и Ек — модули упругости материала шестерни и колеса.

Если обе шестерни изготовлены из одного материала, то в формулу подставляется:

Подставляя в основную формулу все величины, получим

Выразив крутящий момент на оси колеса через мощность в кВт:

Получаем проверочную формулу в окончательном виде:

По этой формуле можно проверить и сравнить с допускаемыми, действующие в данной передаче, контактные напряжения.

Для проектного расчета эта формула преобразуется, для чего ширина шестерни выражается через межцентровое расстояние.

Коэффициент относительной ширины

Для редукторов в среднем ψ = 0,2 ÷ 0,4.
Для коробок передач ψ = 0,1 ÷ 0,2.
Здесь: b — ширина шестерни в см;
А — межцентровое расстояние в см;
nк — число оборотов в минуту вала колеса;
N — мощность на валу колеса в кВт;
[σ] — допускаемое контактное напряжение.
По полученной величине межцентрового расстояния можно подобрать модуль, задавшись числом зубьев малой шестерни Zш = 17 — 25 (с коррекцией Z ≥ 14)

Определение допускаемых контактных напряжений

При циклических нагрузках допускаемые напряжения зависят не только от материала и термообработки, но также и от числа циклов нагружения (времени работы), которое в формуле фигурирует в виде коэффициента режима нагрузки Кр

[σ]к = [σ]таб Кр
где [σ]таб — табличное допускаемое напряжение;
[σ]таб = С1 НВ — для улучшенных сталей;
[σ]таб = С2 HRC — для цементированных и закаленных сталей.
Здесь: С1 и С2 — табличные коэффициенты, зависящие от принятого материала и термообработки.
При постоянном режиме нагрузки:

Nц = 60nt – число циклов нагружения

При переменном режиме нагрузки:

где Mi, ni, ti — крутящий момент, число оборотов и время работы в часах на каждой ступени усредненного графика нагрузки.
Минимальные значения Кp ограничены наступлением длительного предела выносливости. Для улучшенных сталей Кp ≥ 1, для цементированных и закаленных сталей Кp ≥ 0,59

Расчет на усталостный изгиб зубьев

Опасным нагружением считается такое, которое соответствует моменту начала входа зуба в зацепление. Интенсивность нагрузки q p создает две составляющие, из которых одна сжимает, а другая нагибает зуб.
Опасным сечением считается сечение у корня зуба со стороны растянутых волокон, так как закаленные стальные зубья слабее сопротивляются растяжению, чем сжатию
αl — угол зацепления при вершине зуба

Здесь: y — коэффициент формы зуба; определяется по таблицам или графикам в зависимости от числа зубьев и коэффициента коррекции (если она есть).
Подставив значение q, введенное ране, получаем проверочную формулу:

Для проектных расчетов формула преобразуется с введением коэффициента относительной модульной ширины шестерни:

Выражая величины А и b через модуль, получаем проектную формулу:

Обычно шестерни закрытых передач рассчитываются на контактную прочность (опасным является питинг) и проверяются на изгиб; шестерни открытых передач, для которых питинг не опасен, рассчитываются только на изгиб

Определение допускаемых напряжений изгиба

Допускаемые напряжения определяются как часть от предела усталости (выносливости) материала при симметричном цикле нагружения

для нереверсивных передач

для реверсивных передач

Здесь: n1 — коэффициент запаса прочности по пределу усталости, Кσ — коэффициент концентрации напряжений у ножки зуба, Kрн — коэффициент режима нагрузки по изгибу, можно принимать его равным 1 для большинства передач (только для очень тихоходных передач он может быть больше единицы)

Особенности расчета косозубых цилиндрических шестерен

Принципиально расчетные формулы для косозубых шестерен те же, что и для прямозубых, отличие заключается в следующем:

Оценочный параметр Прямозубые Косозубые
Нагрузка на зуб
Длина контактных линий

Особенности расчета конических прямозубых шестерен

Конические шестерни рассчитываются как эквивалентные им цилиндрические.
Окружное усилие определяется по среднему диаметру, расчетным является средний модуль. При определении коэффициента формы зуба принимается эквивалентное число зубьев

Коррекция зубьев шестерен

В целях уменьшения габаритов и веса машин желательно у малых шестерен число зубьев делать минимальным, однако этому препятствует подрез ножки зуба, который для эвольвентного двадцатиградусного зацепления имеет место при Z < 17 зубьев. Вводя коррекцию (теоретическое исправление профиля), можно уменьшить Zmin до 14 зубьев и даже менее

Угловая коррекция (фау-коррекция) заключается в смещении профиля зубьев малой шестерни в плюс (от центра) на величину:
V = ξ m
где ξ — коэффициент коррекции

При этом увеличивается на величину V межцентровое расстояние, а также угол зацепления, так как при раздвижке центров раздвигаются соответственно и основные окружности, к которым касательна линия зацепления

Высотная коррекция (фау-нуль-коррекция), при которой профиль зубьев малой шестерни смещается в плюс (+V), а профиль зубьев колеса на столько же — в минус (-V). При этом межцентровое расстояние и угол зацепление не меняются, изменяются лишь относительная высота головки и ножки зубьев.
Изготовление корригированных шестерен не представляет никаких трудностей

КПД зубчатых передач

Для закрытых передач в среднем:
цилиндрических η =0,98
конических η = 0,97
Для открытых передач:
цилиндрических η = 0,97
конических η = 0,96
Эти цифры включают также потери в опорах качения, которые невелики и составляют от 0,25 до 0,5 % на опору при надежной смазке

Цилиндрические колеса, зубья которых расположены по винтовым линиям на делительном цилиндре и наклонены под некоторым углом β к образующей делительного цилиндра, называются косозубыми (рис. 20).


Рис. 20. Цилиндрическое косозубое колесо

Различают правые и левые косозубые колеса в зависимости от направления винтовой линии зуба. Если совместить по торцам правое и левое колеса, то получится шевронное цилиндрическое колесо.

В отличие от прямозубой в косозубой (и шевронной) передаче зубья входят в зацепление постепенно, от одного толчка к другому. При окружных скоростях свыше 6 м/с рекомендуется использовать косозубые (или шевронные) колёса, т.к. прямозубые колеса при та­ких скоростях работают удовлетворительно лишь при высокой степени точности их изготовления.

Как видно из рис. 20, благодаря наклонному расположению, зуб косозубого колеса длиннее, чем у прямозубого колеса (при равной ширине зубчатого венца bw). Вместе с тем торцовый шаг рt и нормальный шаг рn (в нормальном сечении зубчатого венца) связа­ны между собой зависимостью рt= рn / cos β. Переходя к модулям, получим аналогичное выражение: mt = mn / cos β.

Следует иметь в виду, что профиль косого зуба в нормальном сечении соответствует исходному контуру инструментальной рейки и, значит, совпадает с профилем прямого зуба модулем m = mn.

Поэтому при расчетах модуль m t = m n= m следует согласовывать со стандар­том, т.к. модуль является основным геометрическим параметром передачи.

Нарезание косозубых и шевронных колес может производиться прямозубой рейкой исходного контура по ГОСТ 13755-81, как и при изготовлении прямозубых колес. Наклон зуба получается соответствующим поворотом инструмента относительно заготовки на угол β. При этом может быть обеспечен широкий диапазон угла наклона зубь­ев на колесе: 0° ≤ β ≤ 40° [2, с.165].

Для некорригированных косозубых и шевронных колес:

1) делительный диаметр равен d = m t ∙z = mn ∙ z / cos β,


2) высоты головки ha к ножке hf зуба равны


Тогда межосевое расстояние косозубой или шевронной передачи:


Итак, из вышеизложенного следует, что прямозубую передачу можно рассматривать как частный случай косозубой, при β=0°.

Достоинствакосозубых передач:


1. Благодаря наклонному расположению зубьев коэффициент пе­рекрытия εα увеличивается за счёт дополнительной дуги зацепления ( Δl = bw · tg β):

где εdn , εdк - коэффициенты торцевого перекрытия соответствен­но в прямозубой и косозубой передачах;

εαк = 1,2…1,5 при V 15 м/c,

2.Благодаря наклонному расположению зубьев увеличивается
зона взаимодействия и длина контактных линий.

3. В связи с изменением профиля зуба в торцевом сечении
увеличивается угол зацепления (tg α tw = tg α nw / cos β) и увеличивается сечение ножки зуба. Косозубые колеса обладают большей
нагрузочной способностью (контактной и нагибной), чем прямозубые.

Недостатки косозубых передач:

1. Линии мгновенного контакта располагаются не вдоль образующей зуба, а под углом λ к ней (рис. 21). В результате в начальный момент зацепления колес вся нагрузка приложена со стороны одного из торцов, что приводит к концентрации нагрузки, понижению местной (в районе торца) изгибной прочности и к скалыванию зуба (см. рис. 21).


Рис. 21. Расположение линии мгновенного контакта и схема

скалывания зуба из-за концентрации нагрузки

2. Наклонное расположение зуба по отношению к торцу зубчатого колеса означает появление дополнительной (осевой) составляющей усилия зацепления Fa = Ft ∙ tg β (рис. 22).


Рис. 22. Силы, действующие на зуб косозубого колеса

Чем больше угол β, тем больше сила Fа, что приводит к повышению нагрузки на подшипники и к усложнению конструкций опорных узлов валов передачи. ГОСТ 2185-55 предусматривал значе­ния β = 8 . 18°, при которых, с одной стороны, обеспечивается высокая плавность и нагрузочная способность передачи, а, с другой стороны - небольшая осевая сила Fa.

Новый ГОСТ 2185-66 не предусматривает конкретных значений β, но рекомендации прежнего стандарта можно использовать при выборе угла β. Вместе с тем выполнение косозубого колеса с

Дата добавления: 2015-02-19 ; просмотров: 3395 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Тема 4.5 Зубчатые передачи
Цилиндрическая косозубая зубчатая передача

В результате изучения студент должен знать:
- геометрические параметры цилиндрической косозубой передачи;
- формулы для расчета сил в зацеплении;
- формулы для расчета косозубых передач на контактную прочность и изгиб.

4.5.1 Геометрия и кинематика косозубых цилиндрических передач

Цилиндрические колеса, у которых зубья расположены по винтовым линиям на делительном диаметре, называют косозубыми. При работе такой передачи зубья входят в зацепление не сразу по всей длине, как в прямозубой, а постепенно; передаваемая нагрузка распределяется на несколько зубьев. В результате по сравнению с прямозубой повышается нагрузочная способность, увеличивается плавность работы передачи и уменьшается шум. Поэтому косозубые передачи имеют преимущественное распространение рис. 2.3.14.


;

Рис. 2.3.1 Цилиндрическая косозубая а) и шевронная б) передача

С увеличением угла наклона
линии зуба плавность зацепления и нагрузочная способность передачи увеличиваются рис.2.3.15, но при этом увеличивается и осевая сила Fа, что нежелательно. Поэтому в косозубых передачах принимают угол
.


Рисунок 2.3.15 Геометрия косозубых колес

Основные геометрические размеры зависят от модуля и числа зубьев. При расчёте косозубых колёс учитывают два шага:
нормальный шаг зубьев pn - в нормальном сечении,
окружной шаг pt – в торцовом сечении; при этом

Соответственно шагам имеем два модуля зубьев:


(2.3.22)


(2.3.23)

при этом
(2.3.24)

где mt и mn – окружной и нормальный модули зубьев.

За расчётный принимают модуль mn, значение которого должно соответствовать стандартному. Это объясняется следующим: для нарезания косых зубьев используется тот же инструмент, что и для прямозубых, но с соответствующим поворотом инструмента относительно заготовки на угол
. Поэтому профиль косого зуба в нормальном сечении совпадает с профилем прямого зуба; следовательно, mn=m.

Диаметры делительный и начальный


(2.3.25)

Диаметры вершин и впадин зубьев


(2.3.26)


(2.3.27)


(2.3.28)

4.5.2 Эквивалентное колесо

Профиль косого колеса в нормальном сечении n-n (рис. 3) соответствует исходному контуру инструментальной рейки и, следовательно, совпадает с профилем прямозубого колеса.

Расчет косозубых колес проводят через параметры эквивалентного прямозубого колеса. Нормальное к линии зуба сечение делительного цилиндра имеет форму эллипса. Радиус кривизны эллипса при зацеплении зубьев в полюсе
профиль зуба в этом сечении достаточно близко совпадает с профилем приведённого прямозубого колеса, называемого эквивалентным,профиль зуба в этом сечении достаточно близко совпадает с профилем приведённого прямозубого колеса, называемого эквивалентным.

Делительный диаметр:
(2.3.29)
эквивалентное число зубьев:
(2.3.30)
или
(2.3.31)
где z – действительное число зубьев косозубого колеса. С увеличением возрастает
возрастает
. Это одна из причин повышения прочности косозубых передач.

4.5.3 Силы в зацеплении

Силы в зацеплении определяют в полюсе зацепления. Сила
, действующая на зуб косозубого колеса рис. 2.3.16, направлена по нормали к профилю зуба, т.е. по линии зацепления эквивалентного прямозубого колеса и составляет угол
с касательной к эллипсу.


Рисунок 2.3.16Схема действия сил в зацеплении косозубых колес

Разложим эту силу на две составляющие: окружную силу на эквивалентном колесе:
(2.3.22)
радиальную силу на этом колесе:
(2.3.33)

Переходя от эквивалентного к косозубому колесу, заметим, что сила
является радиальной силой
и для этого колеса, т.е.


сила Ft расположена в плоскости, касательной к начальному цилиндру, и составляет угол
с осью колеса. Разложим силу Ft на две составляющие:
окружную силу
(2.3.35),
и осевую силу
(2.3.36).

Окружная сила известна. Её определяют по передаваемому моменту и диаметру делительной окружности зубчатого колеса
(2.3.37)

Тогда из формулы (2.3.35):
следует
Подставив силу
и выражения
,
окончательно получим:

радиальную силу
(2.3.38)
и осевую силу
(2.3.39).

На зубья шестерни и колеса действуют одинаковые, но противоположно направленные силы. При определении их направления учитывают направление вращения колёс и направление наклона линии зубьев
(правое и левое). Наличие в зацеплении осевой силы, которая дополнительно нагружает валы и подшипники, является недостатком косозубых передач.

4.5.4. Расчет на контактную прочность

Вследствие наклона зубьев в зацеплении одновременно находится несколько пар зубьев, что уменьшает нагрузку на один зуб, повышая его прочность (снижая расчётные напряжения).

Аналогично расчету прямозубой передачи межосевое расстояние для косозубых колес определяют по формуле (2.3.17):


,

где Ка = 43 МПа – для косозубых колес.

Контактные напряжения в поверхностном слое зубьев

,

где
- коэффициент нагрузки при расчете по контактным напряжениям;

- 1,04 – 1,13 коэффициент нагрузки, учитывающий распределение нагрузки между зубьями и зависит от окружной скорости;

- коэффициент нагрузки, учитывающий неравномерность распределения нагрузки по ширине зубчатого венца (по длине контактных линий); для косозубых передач выбирается с учетом расположения колеса на валу и термообработки;

- коэффициент нагрузки, учитывающий дополнительные динамические нагрузки

=1,02-1,06 при любой твердости, скорость до 10 м/с,

=1,1 при твердости поверхности не больше 350 НВ и скорости 10-20 м/с,

=1,05 при твердости более 350 НВ и скорости 10-20 м/с.

Косозубые передачи работают более плавно, чем прямозубые, поэтому коэффициент
, меньше.

Условие контактной прочности косозубой передачи


,

Если условие не выполняется, то изменяют ширину венца колеса b2, не выходя за пределы рекомендуемых значений
. Если это не даст желательного результата, то либо назначает другие материалы колёс или другую термообработку, и расчёт повторяют.

Расчет допускаемых напряжений ведется аналогично расчету прямозубых колес

4.5.5 Расчёт зубьев на изгиб

Наклонное расположение зубьев увеличивает их прочность на изгиб и уменьшает динамические нагрузки. Это учитывается введением в расчётную формулу прямозубых передач поправочных коэффициентов
и
. Формула проверочного расчёта косозубых передач


(2.3.41),

где YF - коэффициент формы зуба выбирают по эквивалентному числу зубьев zv;
- коэффициент, учитывающий наклон зуба;
- коэффициент распределения нагрузки по ширине венца определяют по аналогии с прямозубыми передачами;
= 0,81-0,91 - коэффициент распределения нагрузки между зубьями;
- коэффициент нагрузки, учитывающий дополнительные динамические нагрузки
=1,2 при твердости зубьев не больше 350НВ,
= 1,1 при твердости зубьев более 350 НВ. Нормальный модуль зубьев mn определяют по аналогии с прямозубыми передачами. При некоторых средних значениях коэффициентов получим формулу для приближенного определения модуля косозубых передач


(2.3.42),

и для шевронных передач


(2.3.43),

При проверке по формуле (2.3.41):
можно получить
значительно меньше
, что не является недопустимым, так как нагрузочная способность большинства передач ограничивается контактной прочностью, а не прочностью на изгиб.Если расчётное значение
превышает допускаемое, то применяют колёса, нарезанные с положительным смещением инструмента, или увеличивают m;
>
означает, что в передаче из данных материалов решающее значение имеет не контактная прочность, а прочность зубьев на изгиб. На практике к таким передачам относятся передачи с высокой твёрдостью рабочих поверхностей зубьев – 51…63HRCэ (цементация, нитроцементация, азотирование). Проектировочный расчёт таких передач следует выполнять с целью обеспечения прочности зубьев на изгиб по форме определения минимально допустимого модуля m, а затем выполнить проверочный расчёт зубьев на контактную прочность.

Читайте также: